Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050501    DOI: 10.1088/1674-1056/23/5/050501
GENERAL Prev   Next  

A statistical model for predicting thermal chemical reaction rate

Lin Zheng-Zhe (林正喆)a, Li Wang-Yao (李王尧)b c, Ning Xi-Jing (宁西京)a
a Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China;
b Department of Physics, Fudan University, Shanghai 200433, China;
c State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
Abstract  A simple model based on the statistics of individual atoms [Europhys. Lett. 94 40002 (2011)] or molecules [Chin. Phys. Lett. 29 080504 (2012)] was used to predict chemical reaction rates without empirical parameters, and its physical basis was further investigated both theoretically and via MD simulations. The model was successfully applied to some reactions of extensive experimental data, showing that the model is significantly better than the conventional transition state theory. It is worth noting that the prediction of the model on ab initio level is much easier than the transition state theory or unimolecular RRKM theory.
Keywords:  chemical reaction rate      transition state theory      unimolecular reaction      bimolecular reaction  
Received:  24 August 2013      Revised:  07 November 2013      Accepted manuscript online: 
PACS:  05.20.Dd (Kinetic theory)  
  34.50.Lf (Chemical reactions)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274073) and the Leading Academic Discipline Project of Shanghai, China (Grant No. B107).
Corresponding Authors:  Ning Xi-Jing     E-mail:  xjning@fudan.edu.cn
About author:  05.20.Dd; 34.50.Lf; 71.15.Pd

Cite this article: 

Lin Zheng-Zhe (林正喆), Li Wang-Yao (李王尧), Ning Xi-Jing (宁西京) A statistical model for predicting thermal chemical reaction rate 2014 Chin. Phys. B 23 050501

[1] Marinica M C, Barreteau C, Spanjaard D amd Desjonqueres M C 2005 Phys. Rev. B 72 115402
[2] Mei Q S and Lu K 2007 Prog. Mater. Sci. 52 1175
[3] Celina M, Gillen K T and Assink R A 2005 Polym. Degrad. Stab. 90 395
[4] Smith I W M 2008 Chem. Soc. Rev. 37 812
[5] Ala-Nissila T, Ferrando R and Ying S C 2002 Adv. Phys. 51 949
[6] Eyring H 1935 J. Chem. Phys. 3 107
[7] Truhlar D and Garrett B 1980 Acc. Chem. Res. 13 440
[8] Truhlar D G, Garrett B C and Klippenstein S J 1996 J. Phys. Chem. 100 12771
[9] Quack M and Troe J 1974 Ber. Bunsen-Ges. Phys. Chem. 78 240
[10] Quack M and Troe J 1975 Ber. Bunsen-Ges. Phys. Chem. 79 170
[11] Quack M and Troe J 1975 Ber. Bunsen-Ges. Phys. Chem. 79 469
[12] Georgievskii Y and Klippenstein S J 2005 J. Chem. Phys. 122 194103
[13] Kohen A, Cannio R, Bartolucci S and Klinman J P 1999 Nature 399 496
[14] Basran J, Sutcliffe M J and Scrutton N S 1999 Biochemistry 38 3218
[15] Schreiner P R, Reisenauer H P, Pickard IV F C, Simmonett A C, Allen W D, Mayyus E and Csaszar A G 2008 Nature 453 906
[16] Zhang X, Datta A, Hrovat D A and Borden W T 2009 J. Am. Chem. Soc. 131 16002
[17] Miller W H 1974 Adv. Chem. Phys. 25 69
[18] Miller W H 2001 J. Phys. Chem. 105 2707
[19] Tromp J W and Miller W H 1986 J. Phys. Chem. 90 3482
[20] Miller W H, Zhao Y, Ceotto M and Yang S 2003 J. Chem. Phys. 119 1329
[21] Schubert R, Waalkens H and Wiggins S 2009 Few-Body Syst. 45 203
[22] Buchowiecki M and Vanicek J 2010 J. Chem. Phys. 132 194106
[23] Suleimanov Y V, Collepardo-Guevara R and Manolopoulos D E 2011 J. Chem. Phys. 134 044131
[24] Allen J W, Green W H, Li Y, Guo H and Suleimanov Y V 2013 J. Chem. Phys. 138 221103
[25] Yongle L, Suleimanov Y V, Yang M, Green W H and Guo H 2013 J. Phys. Chem. Lett. 4 48
[26] Marcus R A 1952 J. Chem. Phys. 20 359
[27] Lin Z Z, Yu W F, Wang Y and Ning X J 2011 Europhys. Lett. 94 40002
[28] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[29] Li P and Ning X J 2004 J. Chem. Phys. 121 7701
[30] Yu W F, Lin Z Z and Ning X J 2013 Chin. Phys. B 22 116802
[31] Li W Y, Lin Z Z, Xu J J and Ning X J 2012 Chin. Phys. Lett. 29 080501
[32] Sutherland J W, Su M C and Michael J V 2001 Int J. Chem. Kinet. 33 669
[33] Spindler K and Wagner H G 1982 Ber. Bunsenges. Phys. Chem. 86 2
[34] Millward G E and Tschuikow-Roux E 1972 Int. J. Chem. Kinet. 4 559
[35] Heneghan S P, Knoot P A and Benson S W 1981 Int. J. Chem. Kinet. 13 677
[36] Jasper A W, Klippenstein S J, Harding L B and Ruscic B 2007 J. Phys. Chem. A 111 3932
[37] Enstice E C, Duncan J R, Setser D W and Holmes B E 2011 J. Phys. Chem. A 115 1054
[38] Brenner D W 1990 Phys. Rev. B 42 9458
[39] Halicioglu T 1991 Chem. Phys. Lett. 179 159
[40] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[41] Yelon A, Movaghar B and Branz H M 1992 Phys. Rev. B 46 12244
[42] Ayala P Y and Schlegel H B 1998 J. Chem. Phys. 108 2314
[43] Pople J A, Head-Gordon M and Raghavachari K 1987 J. Chem. Phys. 87 5968
[44] Murakami Y, Onishi S, Kobayashi T, Fujii N, Isshiki N, Tsuchiya K, Tezaki A and Matsui H 2003 J. Phys. Chem. A 107 10996
[45] Gao Y D, Alecu I M, Hsieh P C, Morgan B P, Marshall P and Krasnoperov L N 2006 J. Phys. Chem. A 110 6844
[46] Xu Z F and Lin M C 2007 J. Phys. Chem. A 111 584
[47] Ju L P, Han K L and Zhang J Z H 2008 J. Comput. Chem. 30 305
[1] Simple statistical model for predicting thermal atom diffusion on crystal surfaces
Yu Wei-Feng (于卫锋), Lin Zheng-Zhe (林正喆), Ning Xi-Jing (宁西京). Chin. Phys. B, 2013, 22(11): 116802.
No Suggested Reading articles found!