INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Double-gate-all-around tunnel field-effect transistor |
Wen-Hao Zhang(张文豪)1, Zun-Chao Li(李尊朝)1,2, Yun-He Guan(关云鹤)1, Ye-Fei Zhang(张也非)1 |
1 School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China;
2 Guangdong Xi'an Jiaotong University Academy, Shunde 528300, China |
|
|
Abstract In this work, a double-gate-all-around tunneling field-effect transistor is proposed. The performance of the novel device is studied by numerical simulation. The results show that with a thinner body and an additional core gate, the novel device achieves a steeper subthreshold slope, less susceptibility to the short channel effect, higher on-state current, and larger on/off current ratio than the traditional gate-all-around tunneling field-effect transistor. The excellent performance makes the proposed structure more attractive to further dimension scaling.
|
Received: 18 January 2017
Revised: 06 April 2017
Accepted manuscript online:
|
PACS:
|
85.30.Mn
|
(Junction breakdown and tunneling devices (including resonance tunneling devices))
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61176038 and 61474093),the Science and Technology Planning Project of Guangdong Province,China (Grant No.2015A010103002),and the Technology Development Program of Shanxi Province,China (Grant No.2016GY075). |
Corresponding Authors:
Zun-Chao Li
E-mail: zcli@mail.xjtu.edu.cn
|
Cite this article:
Wen-Hao Zhang(张文豪), Zun-Chao Li(李尊朝), Yun-He Guan(关云鹤), Ye-Fei Zhang(张也非) Double-gate-all-around tunnel field-effect transistor 2017 Chin. Phys. B 26 078502
|
[1] |
Chen Q, Agrawal B and Meindl J 2002 IEEE Trans. Electron Dev. 49 1086
|
[2] |
Saurabh S and Jagadesh Kumar M 2011 IEEE Trans. Electron Dev. 58 404
|
[3] |
Wang H, Chang S, Hu Y, He J, Huang Q J, He F and Wang G F 2014 IEEE Trans. Electron Dev. 35 798
|
[4] |
Nagavarapu V, Jhaveri R and Woo J C S 2008 IEEE Trans. Electron Dev. 55 1013
|
[5] |
Sharma A, Goud A A and Roy K 2014 IEEE Trans. Electron Dev. 35 1221
|
[6] |
Verhulst A S, Vandenberghe W G, Maex K, De Gendt S, Heyns M M and Groeseneken G 2008 IEEE Trans. Electron Dev. 29 1398
|
[7] |
Agarwal S, Klimeck G and Luisier M 2008 IEEE Trans. Electron Dev. 31 621
|
[8] |
Toh E H, Wang G H, Chan L, Sylvester D, Heng C H, Samudra G S and Lee Y C 2008 Jpn. J. Appl. Phys. 47 2593
|
[9] |
Schlosser M, Bhuwalka K K, Sauter M, Zilbauer T, Sulima T and Eisele I 2008 IEEE Trans. Electron Dev. 31 621
|
[10] |
Kim S H, Agarwal S, Jacobson Z A, Matheu P, Hu C and Liu T J K 2010 IEEE Electron Dev. Lett. 31 1107
|
[11] |
Marcio D V, Martino J A and Paula G D Agopian 2014 IEEE 29$th Mircroelectronics Technology and Devices (SBMicro) p. 1
|
[12] |
Shih C H and Chien N D 2011 IEEE Electron Dev. Lett. 32 1498
|
[13] |
Shibir Basak, Pranav Kumar Asthana, Yogesh Goswami and Bahniman Ghosh 2014 Appl. Phys. A 118 1527
|
[14] |
Kao K H, Verhulst A S, Vandenberghe W G and Meyer K De 2013 IEEE Electron Dev. Lett. 60 6
|
[15] |
Guan Y H, Li Z C, Luo D X, Meng Q Z and Zhang Y F 2016 Chin. Phys. B 25 108502
|
[16] |
Jhan Y R, Wu Y C and Hung M F 2013 IEEE IEEE Electron Dev. Lett. 34 1482
|
[17] |
Wang Y, Wang X, Xue W and Cao F 2016 Superlattices and Microstructures 91 216
|
[18] |
Min Jin Lee and Woo Young Choi 2012 IEEE Electron Dev. Lett. 33 1459
|
[19] |
Moselund K E, Schmid H, Bessire C, Björk M T, Ghoneim H and Riel H 2012 IEEE Electron Dev. Lett. 33 1453
|
[20] |
Rooyackers R, Vandooren A, Verhulst A S, Walke A, Devriendt K, Locorotondo S, Demand M, Bryce G, Loo R, Hikavyy A, Vandeweyer T, Huyghebaert C, Collaert N and Thean A Proc. IEEE Int. Electron Devices Meeting, Dec. 2013, pp. 4.2.1–4.2.4
|
[21] |
Gandhi R, Chen Z, Singh N, Banerjee K and Lee S 2011 IEEE Electron Dev. Lett. 32 437
|
[22] |
Felipe S Neves, Paula G D Agopian, Joao Antonio Martino, Bogdan Cretu, Rita Rooyackers, Anne Vandooren, Eddy Simoen, Aaron Voon-Yew Thean and Cor Claeys 2016 IEEE Trans. Electron Dev. 63 1658
|
[23] |
Lee H, Park J D and Shin C 2011 IEEE Electron Dev. Lett. 63 1827
|
[24] |
ATLAS Device Simulation Software, Silvaco, Version 5.18.20R, 2010
|
[25] |
Guin S, Chattopadhyay A, Karmakar A and Mallik A 2014 IEEE Trans. Electron Dev. 61 2515
|
[26] |
Boucart K and Ionescu A M 2007 IEEE Trans. Electron Dev. 54 1725
|
[27] |
Wang Y, Wang Y F, Sun L L, Wei X and Cao F 2016 Micro & Nano Lett. 11 472
|
[28] |
Zhang Q, Zhao W and Seabaugh A 2006 IEEE IEEE Electron Dev. Lett. 27 297
|
[29] |
Abhijit Mallik and Avik Chattopadhyay 2012 IEEE Trans. Electron Dev. 59 888
|
[30] |
Abhijit Mallik and Avik Chattopadhyay 2011 IEEE Trans. Electron Dev. 58 4025
|
[31] |
Daniel Tekleab 2014 IEEE IEEE Electron Dev. Lett. 35 506
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|