Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 078502    DOI: 10.1088/1674-1056/26/7/078502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Double-gate-all-around tunnel field-effect transistor

Wen-Hao Zhang(张文豪)1, Zun-Chao Li(李尊朝)1,2, Yun-He Guan(关云鹤)1, Ye-Fei Zhang(张也非)1
1 School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China;
2 Guangdong Xi'an Jiaotong University Academy, Shunde 528300, China
Abstract  

In this work, a double-gate-all-around tunneling field-effect transistor is proposed. The performance of the novel device is studied by numerical simulation. The results show that with a thinner body and an additional core gate, the novel device achieves a steeper subthreshold slope, less susceptibility to the short channel effect, higher on-state current, and larger on/off current ratio than the traditional gate-all-around tunneling field-effect transistor. The excellent performance makes the proposed structure more attractive to further dimension scaling.

Keywords:  gate-all-around (GAA)      tunnel field effect transistor (TFET)      drain induced barrier thinning (DIBT)  
Received:  18 January 2017      Revised:  06 April 2017      Accepted manuscript online: 
PACS:  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.61176038 and 61474093),the Science and Technology Planning Project of Guangdong Province,China (Grant No.2015A010103002),and the Technology Development Program of Shanxi Province,China (Grant No.2016GY075).

Corresponding Authors:  Zun-Chao Li     E-mail:  zcli@mail.xjtu.edu.cn

Cite this article: 

Wen-Hao Zhang(张文豪), Zun-Chao Li(李尊朝), Yun-He Guan(关云鹤), Ye-Fei Zhang(张也非) Double-gate-all-around tunnel field-effect transistor 2017 Chin. Phys. B 26 078502

[1] Chen Q, Agrawal B and Meindl J 2002 IEEE Trans. Electron Dev. 49 1086
[2] Saurabh S and Jagadesh Kumar M 2011 IEEE Trans. Electron Dev. 58 404
[3] Wang H, Chang S, Hu Y, He J, Huang Q J, He F and Wang G F 2014 IEEE Trans. Electron Dev. 35 798
[4] Nagavarapu V, Jhaveri R and Woo J C S 2008 IEEE Trans. Electron Dev. 55 1013
[5] Sharma A, Goud A A and Roy K 2014 IEEE Trans. Electron Dev. 35 1221
[6] Verhulst A S, Vandenberghe W G, Maex K, De Gendt S, Heyns M M and Groeseneken G 2008 IEEE Trans. Electron Dev. 29 1398
[7] Agarwal S, Klimeck G and Luisier M 2008 IEEE Trans. Electron Dev. 31 621
[8] Toh E H, Wang G H, Chan L, Sylvester D, Heng C H, Samudra G S and Lee Y C 2008 Jpn. J. Appl. Phys. 47 2593
[9] Schlosser M, Bhuwalka K K, Sauter M, Zilbauer T, Sulima T and Eisele I 2008 IEEE Trans. Electron Dev. 31 621
[10] Kim S H, Agarwal S, Jacobson Z A, Matheu P, Hu C and Liu T J K 2010 IEEE Electron Dev. Lett. 31 1107
[11] Marcio D V, Martino J A and Paula G D Agopian 2014 IEEE 29$th Mircroelectronics Technology and Devices (SBMicro) p. 1
[12] Shih C H and Chien N D 2011 IEEE Electron Dev. Lett. 32 1498
[13] Shibir Basak, Pranav Kumar Asthana, Yogesh Goswami and Bahniman Ghosh 2014 Appl. Phys. A 118 1527
[14] Kao K H, Verhulst A S, Vandenberghe W G and Meyer K De 2013 IEEE Electron Dev. Lett. 60 6
[15] Guan Y H, Li Z C, Luo D X, Meng Q Z and Zhang Y F 2016 Chin. Phys. B 25 108502
[16] Jhan Y R, Wu Y C and Hung M F 2013 IEEE IEEE Electron Dev. Lett. 34 1482
[17] Wang Y, Wang X, Xue W and Cao F 2016 Superlattices and Microstructures 91 216
[18] Min Jin Lee and Woo Young Choi 2012 IEEE Electron Dev. Lett. 33 1459
[19] Moselund K E, Schmid H, Bessire C, Björk M T, Ghoneim H and Riel H 2012 IEEE Electron Dev. Lett. 33 1453
[20] Rooyackers R, Vandooren A, Verhulst A S, Walke A, Devriendt K, Locorotondo S, Demand M, Bryce G, Loo R, Hikavyy A, Vandeweyer T, Huyghebaert C, Collaert N and Thean A Proc. IEEE Int. Electron Devices Meeting, Dec. 2013, pp. 4.2.1–4.2.4
[21] Gandhi R, Chen Z, Singh N, Banerjee K and Lee S 2011 IEEE Electron Dev. Lett. 32 437
[22] Felipe S Neves, Paula G D Agopian, Joao Antonio Martino, Bogdan Cretu, Rita Rooyackers, Anne Vandooren, Eddy Simoen, Aaron Voon-Yew Thean and Cor Claeys 2016 IEEE Trans. Electron Dev. 63 1658
[23] Lee H, Park J D and Shin C 2011 IEEE Electron Dev. Lett. 63 1827
[24] ATLAS Device Simulation Software, Silvaco, Version 5.18.20R, 2010
[25] Guin S, Chattopadhyay A, Karmakar A and Mallik A 2014 IEEE Trans. Electron Dev. 61 2515
[26] Boucart K and Ionescu A M 2007 IEEE Trans. Electron Dev. 54 1725
[27] Wang Y, Wang Y F, Sun L L, Wei X and Cao F 2016 Micro & Nano Lett. 11 472
[28] Zhang Q, Zhao W and Seabaugh A 2006 IEEE IEEE Electron Dev. Lett. 27 297
[29] Abhijit Mallik and Avik Chattopadhyay 2012 IEEE Trans. Electron Dev. 59 888
[30] Abhijit Mallik and Avik Chattopadhyay 2011 IEEE Trans. Electron Dev. 58 4025
[31] Daniel Tekleab 2014 IEEE IEEE Electron Dev. Lett. 35 506
[1] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[5] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[6] Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures
Jia-Xin Wang(王加鑫), Xiao-Jing Li(李晓静), Fa-Zhan Zhao(赵发展), Chuan-Bin Zeng(曾传滨), Duo-Li Li(李多力), Lin-Chun Gao(高林春), Jiang-Jiang Li(李江江), Bo Li(李博), Zheng-Sheng Han(韩郑生), and Jia-Jun Luo(罗家俊). Chin. Phys. B, 2021, 30(7): 078501.
[7] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[8] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[9] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[10] Design and investigation of dopingless double-gate line tunneling transistor: Analog performance, linearity, and harmonic distortion analysis
Hui-Fang Xu(许会芳)†, Xin-Feng Han(韩新风), and Wen Sun(孙雯). Chin. Phys. B, 2020, 29(10): 108502.
[11] Design of a novel high holding voltage LVTSCR with embedded clamping diode
Ling Zhu(朱玲), Hai-Lian Liang(梁海莲), Xiao-Feng Gu(顾晓峰), Jie Xu(许杰). Chin. Phys. B, 2020, 29(6): 068503.
[12] Characteristic enhancement in tunnel field-effect transistors via introduction of vertical graded source
Zhijun Lyu(吕智军), Hongliang Lu(吕红亮), Yuming Zhang(张玉明), Yimen Zhang(张义门), Bin Lu(芦宾), Yi Zhu(朱翊), Fankang Meng(孟凡康), Jiale Sun(孙佳乐). Chin. Phys. B, 2020, 29(5): 058501.
[13] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[14] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[15] Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
Ru Han(韩茹), Hai-Chao Zhang(张海潮), Dang-Hui Wang(王党辉), Cui Li(李翠). Chin. Phys. B, 2019, 28(1): 018505.
No Suggested Reading articles found!