Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078503    DOI: 10.1088/1674-1056/abe372
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance

Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜)
Institute of Electrical and Electronic Engineering, Anhui Science and Technology University, Fengyang 233100, China
Abstract  The various advantages of extended-source (ES), broken gate (BG), and hetero-gate-dielectric (HGD) technology are blended together for the proposed tunnel field-effect transistor (ESBG TFET) in order to enhance the direct-current and analog/radio-frequency performance. The source of the ESBG TFET is extended into channel for the purpose of increasing the point and line tunneling in the device at the tunneling junction, and then, the on-state current for the ESBG TFET increases. The influence of the source region length on the direct-current and radio-frequency performance parameters of the ESBG TFET is analyzed in detail. The results show that the proposed TFET exhibits a high on-state current to off-state current ratio of 1013, large transconductance of 1200 μS/μm, high cut-off frequency of 72.8 GHz, and high gain bandwidth product of 14.3 GHz. Apart from these parameters, the ESBG TFET also demonstrates high linearity distortion parameters in terms of the second- and third-order voltage intercept points, the third-order input interception point, and the third-order intermodulation distortion. Therefore, the ESBG TFET greatly promotes the application potential of conventional TFETs.
Keywords:  extended-source      broken gate      radio-frequency performances      tunnel field-effect transistor  
Received:  28 November 2020      Revised:  11 January 2021      Accepted manuscript online:  05 February 2021
PACS:  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  81.05.Ea (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the University Natural Science Research Key Project of Anhui Province (Grant No. KJ2020A0075) and Excellent Talents Supported Project of Colleges and Universities (Grant No. gxyq2018048).
Corresponding Authors:  Hui-Fang Xu     E-mail:  xu0342@163.com

Cite this article: 

Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜) Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance 2021 Chin. Phys. B 30 078503

[1] Lin J, Wang T, Lee W, Yeh C, Glass S and Zhao Q 2018 IEEE Trans. Electron Devices 65 769
[2] Kim S W, Kim J H, Liu T J K, Choi W Y and Park B G 2016 IEEE Trans. Electron Devices 63 1774
[3] Yang Z 2016 IEEE Electron Dev. Lett. 37 839
[4] Ashita, Sajad A L and Rafat M 2018 IEEE Trans. Electron Devices 65 763
[5] Wu J Z and Taur Y 2016 IEEE Trans. Electron Devices 63 3342
[6] Kumar P and Bhowmick B 2018 Micro & Nano Lett. 13 626
[7] Liu H, Yang L A, Jin Z and Hao Y 2019 IEEE Trans. Electron Devices 66 3229
[8] Abdi D B and Kumar M J 2014 IEEE Trans. Electron Devices Soc. 2 187
[9] Dubey P K and Kaushik B K 2017 IEEE Trans. Electron Devices 64 3120
[10] Han R, Zhang H C, Wang D H and Li C 2019 Chin. Phys. B 28 018505
[11] Moselund K E, Schmid H, Bessire C, Bjork M T, Ghoneim H and Riel H 2012 IEEE Electron Dev. Lett. 33 1453
[12] Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102
[13] Li C, Yan Z R, Zhuang Y Q, Zhao X L and Guo J M 2018 Chin. Phys. B 27 078502
[14] Wang W, Wang P F, Zhang C M, Lin X, Liu X Y, Sun Q Q, Zhou P and Zhang D W 2014 IEEE Trans. Electron Devices 61 193
[15] Musalgaonkar G, Sahay S, Saxena R S and Kumar M J 2019 IEEE Trans. Electron Devices 66 4425
[16] Fahad H M and M M 2013 IEEE Trans. Electron Devices 60 1034
[17] Sanjay K, Kunal S, Sweta C, Ekta G, Prince K S, Kamalaksha B, Balraj S and Satyabrata J 2018 IEEE Trans. Electron Devices 65 331
[18] Dong Y P, Zhang LN, Li X B, Lin XN and Chan M S 2016 IEEE Trans. Electron Devices 63 4506
[19] Ahish S, Sharma D, Vasantha M H and Kumar Y B N 2016 Superlattices Microstruct. 94 119
[20] Boucart K and Ionescu A M 2007 IEEE Trans. Electron Devices 54 1725
[21] Raad B R, Sharma D, Kondekar P, Nigam K and Yadav D S 2016 IEEE Trans. Electron Devices 63 3950
[22] Nigam K, Pandey S, Kondekar P N, Sharma D and Parte P K 2017 IEEE Trans. Electron Devices 64 2751
[23] Paras N and Chauhan S S 2019 Microelectron. Eng. 216 111043
[24] Paras N and Chauhan S S 2019 Microelectron. Eng. 217 111103
[25] Singh A K, Tripathy M R, Baral K, Singh P K and Jit S 2020 Microelectron. J. 102 104775
[26] Li C, Zhao X L, Zhuang Y Q, Yan Z R, Guo J M and Han R 2018 Superlattices Microstruct. 115 154
[27] Yadav S, Sharma D, Chandan B V, Aslam M, Soni D and Sharma N 2018 Superlattices Microstruct. 117 9
[28] Xu H F, Cui J, Sun W and Han X F 2019 Chin. Phys. B 28 108501
[29] Puja G, Goswami R and Bhowmick B 2019 Microelectron. J. 92 104618
[30] Tripuresh J, Yashvir S and Balraj S 2020 IEEE Trans. Electron Devices 67 1873
[31] Dutta R and Sarkar S K 2019 IEEE Trans. Electron Devices 66 3513
[32] Silvaco, Inc., ATLAS users' manual (Silvaco Inc., Santa Clara, CA, 2016)
[33] Chen S, Liu H, Wang S, Li W, Wang X and Zhao L 2018 Nanosc. Res. Lett. 13 321
[34] Tripathy M R, Singh A K, Samad A, Chander S, Baral K, Singh P K and Jit S 2020 IEEE Trans. Electron Devices 67 1285
[35] Wang Q, Wang S, Liu H, Li W and Chen S 2017 Jpn. J. Appl. Phys. 56 064102
[36] Vijayvargiya V, Reniwal B S, Singh P and Vishvakarma S K 2017 Semicond. Sci. Technol. 32 065005
[1] Characteristic enhancement in tunnel field-effect transistors via introduction of vertical graded source
Zhijun Lyu(吕智军), Hongliang Lu(吕红亮), Yuming Zhang(张玉明), Yimen Zhang(张义门), Bin Lu(芦宾), Yi Zhu(朱翊), Fankang Meng(孟凡康), Jiale Sun(孙佳乐). Chin. Phys. B, 2020, 29(5): 058501.
[2] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[3] Optimization of ambipolar current and analog/RF performance for T-shaped tunnel field-effect transistor with gate dielectric spacer
Ru Han(韩茹), Hai-Chao Zhang(张海潮), Dang-Hui Wang(王党辉), Cui Li(李翠). Chin. Phys. B, 2019, 28(1): 018505.
[4] Ge/Si heterojunction L-shape tunnel field-effect transistors with hetero-gate-dielectric
Cong Li(李聪), Zhi-Rui Yan(闫志蕊), Yi-Qi Zhuang(庄奕琪), Xiao-Long Zhao(赵小龙), Jia-Min Guo(郭嘉敏). Chin. Phys. B, 2018, 27(7): 078502.
[5] Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction
Shuqin Zhang(张书琴), Renrong Liang(梁仁荣), Jing Wang(王敬), Zhen Tan(谭桢), Jun Xu(许军). Chin. Phys. B, 2017, 26(1): 018504.
[6] Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
Zhi Jiang(蒋 智), Yi-Qi Zhuang(庄奕琪), Cong Li(李 聪), Ping Wang(王 萍), Yu-Qi Liu(刘予琪). Chin. Phys. B, 2016, 25(2): 027701.
[7] Two-dimensional threshold voltage model of nanoscale silicon-on-insulator tunneling field-effect transistor
Li Yu-Chen (李妤晨), Zhang He-Ming (张鹤鸣), Zhang Yu-Ming (张玉明), Hu Hui-Yong (胡辉勇), Wang Bin (王斌), Lou Yong-Le (娄永乐), Zhou Chun-Yu (周春宇). Chin. Phys. B, 2013, 22(3): 038501.
No Suggested Reading articles found!