Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 076801    DOI: 10.1088/1674-1056/26/7/076801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of the Be22W phase formation on hydrogen retention and blistering in mixed Be/W systems

Jin-Li Cao(曹金利)1, Bing-Ling He(赫丙龄)2, Wei Xiao(肖伟)1,3, Li-Gen Wang(王立根)3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China;
3 State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088, China
Abstract  

We have performed first-principles density functional theory calculations to investigate the retention and migration of hydrogen in Be22W, a stable low-W intermetallic compound. The solution energy of interstitial H in Be22W is found to be 0.49 eV lower, while the diffusion barrier, on the other hand, is higher by 0.13 eV compared to those in pure hcp-Be. The higher solubility and lower diffusivity for H atoms make Be22W a potential beneficial secondary phase in hcp-Be to impede the accumulation of H atoms, and hence better resist H blistering. We also find that in Be22W, the attraction between an interstitial H and a beryllium vacancy ranges from 0.34 eV to 1.08 eV, which indicates a weaker trapping for hydrogen than in pure Be. Our calculated results suggest that small size Be22W particles in hcp-Be might serve as the hydrogen trapping centers, hinder hydrogen bubble growth, and improve the resistance to irradiation void swelling, just as dispersed oxide particles in steel do.

Keywords:  first-principles      hydrogen      Be22W  
Received:  23 January 2017      Revised:  23 March 2017      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: 

Project supported by the National Magnetic Confinement Fusion Program of China (Grant Nos.2014GB104003 and 2015GB105001) and the National Natural Science Foundation of China (Grant No.51504033).

Corresponding Authors:  Wei Xiao     E-mail:  wxiao@ustb.edu.cn

Cite this article: 

Jin-Li Cao(曹金利), Bing-Ling He(赫丙龄), Wei Xiao(肖伟), Li-Gen Wang(王立根) Effects of the Be22W phase formation on hydrogen retention and blistering in mixed Be/W systems 2017 Chin. Phys. B 26 076801

[1] Merola M 2010 Fusion Eng. Des. 85 2312
[2] Perkins F W 1999 Nucl. Fusion 39 2137
[3] Wiltner A, Kost F, Lindig S and Linsmeier Ch 2007 Phys. Scr. T128 133
[4] Linsmeier Ch 2007 J. Nucl. Mater. 363–365 1129
[5] Baldwin M J 2007 J. Nucl. Mater. 363–365 1179
[6] Lasa A, Heinola K and Nordlund K 2014 Nucl. Fusion 54 083001
[7] Ganchenkova M G, Borodin V A and Nieminen R M 2009 Phys. Rev. B 79 134101
[8] Ohsawa K, Goto J, Yamakami M and Yagi M 2010 Phys. Rev. B 82 184117
[9] Zhang P B, Zhao J J and Wen B 2012 J. Phy.:Condens. Matter. 24 095004
[10] Xiao W, Luo G N and Geng W T 2012 J. Nucl. Mater. 421 176
[11] Doerner R P, Baldwin M J and Causey R A 2005 J. Nucl. Mater. 342 63
[12] Doerner R P 2007 Phys. Scr. T128 115
[13] Wiltner A and Linsmeier C 2005 J. Nucl. Mater. 337 951
[14] Allouche A, Fernandez N and Ferro Y 2014 J. Phys.:Conden. Matter. 26 315012
[15] Okammoto H and Tanner L E 1991 Phase Diagrams of Binary Tungsten Alloys (Calcutta:Indian Institute of Metals)
[16] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[17] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[18] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Henkelman G, Uberuaga B P and Jònsson H 2000 J.Chem. Phys. 113 9901
[24] Jain A 2013 APL Mater. 1 011002
[25] Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
[26] Zhang P B, Zhao J J and Wen B 2012 J. Nucl. Mater. 423 164
[27] Allouche A, Oberkofler M, Reinelt M and Linsmeier Ch. 2010 J. Phys. Chem. C 114 3588
[28] Baskes M I and Johnson R A 1994 Model. Simul. Mater. Sci. 2 147
[29] Fukai Y 2003 Phys. Scr. T103 11
[30] Hsiung L L 2010 Phys. Rev. B 82 184103
[31] Esteban G A 2007 Fusion Eng. Des. 82 2634
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[10] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
No Suggested Reading articles found!