ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spectroscopic and radiation-resistant properties of Er, Pr: GYSGG laser crystal operated at 2.79μm |
Xu-Yao Zhao(赵绪尧)1,2, Dun-Lu Sun(孙敦陆)1, Jian-Qiao Luo(罗建乔)1,3, Hui-Li Zhang(张会丽)1,2, Zhong-Qing Fang(方忠庆)1,2, Cong Quan(权聪)1,2, Xiu-Li Li(李秀丽)1, Mao-Jie Cheng(程毛杰)1, Qing-Li Zhang(张庆礼)1, Shao-Tang Yin(殷绍唐)1 |
1 The Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230022, China; 3 State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037, China |
|
|
Abstract We demonstrate the spectroscopic and laser performance before and after 100 Mrad gamma-ray irradiation on an Er,Pr:GYSGG crystal grown by the Czochralski method. The additional absorption of Er,Pr:GYSGG crystal is close to zero in the 968 nm pumping and 2.7–3μm laser wavelength regions. The lifetimes of the upper and lower levels show faint decreases after gamma-ray irradiation. The maximum output powers of 542 and 526 mW with the slope efficiencies of 17.7% and 17.0% are obtained, respectively, on the GYSGG/Er,Pr:GYSGG composite crystal before and after the gamma-ray irradiation. These results suggest that Er,Pr:GYSGG crystal as a laser gain medium possesses a distinguished anti-radiation ability for application in space and radiant environments.
|
Received: 30 December 2016
Revised: 09 March 2017
Accepted manuscript online:
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFB1102301),the National Natural Science Foundation of China (Grant Nos.51272254,61405206,and 51502292),and the Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology,Electronic Engineering Institute,China (Grant No.SKL2015KF01). |
Corresponding Authors:
Dun-Lu Sun
E-mail: dlsun@aiofm.ac.cn
|
Cite this article:
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Xiu-Li Li(李秀丽), Mao-Jie Cheng(程毛杰), Qing-Li Zhang(张庆礼), Shao-Tang Yin(殷绍唐) Spectroscopic and radiation-resistant properties of Er, Pr: GYSGG laser crystal operated at 2.79μm 2017 Chin. Phys. B 26 074217
|
[1] |
Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Chen J K, Liu W P, Kang H X and Yin S T 2012 Chin. Phys. Lett. 29 54209
|
[2] |
Rose T S, Hopkins M S and Fields R A 1995 IEEE J. Quantum Electron. 31 1593
|
[3] |
Sugak D, Matkovskii A, Durygin A, Suchocki A, Solskii I, Ubizskii S, Kopczynski K. Mierczyk Z and Potera P 1999 J. Lumin. 82 9
|
[4] |
Meister J, Franzen R, Apel C and Gutknecht N 2004 Appl. Opt. 43 5864
|
[5] |
Sun D L, Luo J Q, Zhang Q L, Xiao J Z, Liu W P, Wang S F, Jiang H H and Yin S T 2011 J. Cryst. Growth 318 669
|
[6] |
Chen J K, Sun D L, Luo J Q, Xiao J Z, Dou R Q and Zhang Q L 2013 Opt. Commun. 301 84
|
[7] |
Xu Y N, Ching W Y and Brickeen B K 2000 Phys. Rev. B 61 1817
|
[8] |
Chen J K, Sun D L, Luo J Q, Zhang H L, Dou R Q, Xiao J Z, Zhang Q L and Yin S T 2013 Opt. Express 21 23425
|
[9] |
Matkovski A, Durygin A, Suchocki A, Sugak D, Neuroth G, Wallrafen F, Grabovski V and Solski I 1999 Opt. Mater. 12 75
|
[10] |
Sun D L, Zhang Q L, Xiao J Z, Luo J Q, Jiang H H and Yin S T 2008 Chin. Phys. Lett. 25 2081
|
[11] |
Dong Y J, Xu J, Zhou G Q, Zhao G J, Su L B, Xu X D, Li H J and Si J L 2007 Phys. Status Solidi A 204 608
|
[12] |
Matkovskii A, Potera P, Sugak D, Grigorjeva L, Millers D, Pankratov V and Suchocki A 2004 Cryst. Res. Technol. 39 788
|
[13] |
Matkovskii A, Durygin A, Suchocki A, Sugak D, Wallrafen F and Vakiv M 1999 Radiat Eff. Defects Solids 150 199
|
[14] |
Hodgson E R, Arizmendi L and Agullò Lòpez F 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 65 275
|
[15] |
Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Jiang H H and Yin S T, Wang Y F and Ge X W 2008 Appl. Phys. B 92 529
|
[16] |
Fagundes-Peters D, Martynyuk N, Lünstedt K, Peters V, Petermann K, Huber G, Basun S, Laguta V and Hofstaetter A 2007 J. Lumin. 125 238
|
[17] |
Sousa D F. de, Batalioto F, Bell M J V, Oliveira S L and Nunes L A O 2001 J. Appl. Phys. 90 3308
|
[18] |
Zharikov E V, Kuratev I I, Laptev V V, Naselskii S P, Ryabov A I, Toropkin G N, Shestakov A V and Shcherbakov I A 1984 Bull. Acad. Sci. USSR, Phys. Ser. 48 103
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|