Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074217    DOI: 10.1088/1674-1056/26/7/074217
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spectroscopic and radiation-resistant properties of Er, Pr: GYSGG laser crystal operated at 2.79μm

Xu-Yao Zhao(赵绪尧)1,2, Dun-Lu Sun(孙敦陆)1, Jian-Qiao Luo(罗建乔)1,3, Hui-Li Zhang(张会丽)1,2, Zhong-Qing Fang(方忠庆)1,2, Cong Quan(权聪)1,2, Xiu-Li Li(李秀丽)1, Mao-Jie Cheng(程毛杰)1, Qing-Li Zhang(张庆礼)1, Shao-Tang Yin(殷绍唐)1
1 The Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230022, China;
3 State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037, China
Abstract  We demonstrate the spectroscopic and laser performance before and after 100 Mrad gamma-ray irradiation on an Er,Pr:GYSGG crystal grown by the Czochralski method. The additional absorption of Er,Pr:GYSGG crystal is close to zero in the 968 nm pumping and 2.7–3μm laser wavelength regions. The lifetimes of the upper and lower levels show faint decreases after gamma-ray irradiation. The maximum output powers of 542 and 526 mW with the slope efficiencies of 17.7% and 17.0% are obtained, respectively, on the GYSGG/Er,Pr:GYSGG composite crystal before and after the gamma-ray irradiation. These results suggest that Er,Pr:GYSGG crystal as a laser gain medium possesses a distinguished anti-radiation ability for application in space and radiant environments.
Keywords:  Er      Pr:GYSGG crystal      gamma-ray irradiation      anti-radiation ability      laser material  
Received:  30 December 2016      Revised:  09 March 2017      Accepted manuscript online: 
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.70.Hj (Laser materials)  
  61.80.Ed (γ-ray effects)  
  87.80.Dj (Spectroscopies)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFB1102301),the National Natural Science Foundation of China (Grant Nos.51272254,61405206,and 51502292),and the Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology,Electronic Engineering Institute,China (Grant No.SKL2015KF01).
Corresponding Authors:  Dun-Lu Sun     E-mail:  dlsun@aiofm.ac.cn

Cite this article: 

Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Xiu-Li Li(李秀丽), Mao-Jie Cheng(程毛杰), Qing-Li Zhang(张庆礼), Shao-Tang Yin(殷绍唐) Spectroscopic and radiation-resistant properties of Er, Pr: GYSGG laser crystal operated at 2.79μm 2017 Chin. Phys. B 26 074217

[1] Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Chen J K, Liu W P, Kang H X and Yin S T 2012 Chin. Phys. Lett. 29 54209
[2] Rose T S, Hopkins M S and Fields R A 1995 IEEE J. Quantum Electron. 31 1593
[3] Sugak D, Matkovskii A, Durygin A, Suchocki A, Solskii I, Ubizskii S, Kopczynski K. Mierczyk Z and Potera P 1999 J. Lumin. 82 9
[4] Meister J, Franzen R, Apel C and Gutknecht N 2004 Appl. Opt. 43 5864
[5] Sun D L, Luo J Q, Zhang Q L, Xiao J Z, Liu W P, Wang S F, Jiang H H and Yin S T 2011 J. Cryst. Growth 318 669
[6] Chen J K, Sun D L, Luo J Q, Xiao J Z, Dou R Q and Zhang Q L 2013 Opt. Commun. 301 84
[7] Xu Y N, Ching W Y and Brickeen B K 2000 Phys. Rev. B 61 1817
[8] Chen J K, Sun D L, Luo J Q, Zhang H L, Dou R Q, Xiao J Z, Zhang Q L and Yin S T 2013 Opt. Express 21 23425
[9] Matkovski A, Durygin A, Suchocki A, Sugak D, Neuroth G, Wallrafen F, Grabovski V and Solski I 1999 Opt. Mater. 12 75
[10] Sun D L, Zhang Q L, Xiao J Z, Luo J Q, Jiang H H and Yin S T 2008 Chin. Phys. Lett. 25 2081
[11] Dong Y J, Xu J, Zhou G Q, Zhao G J, Su L B, Xu X D, Li H J and Si J L 2007 Phys. Status Solidi A 204 608
[12] Matkovskii A, Potera P, Sugak D, Grigorjeva L, Millers D, Pankratov V and Suchocki A 2004 Cryst. Res. Technol. 39 788
[13] Matkovskii A, Durygin A, Suchocki A, Sugak D, Wallrafen F and Vakiv M 1999 Radiat Eff. Defects Solids 150 199
[14] Hodgson E R, Arizmendi L and Agullò Lòpez F 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 65 275
[15] Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Jiang H H and Yin S T, Wang Y F and Ge X W 2008 Appl. Phys. B 92 529
[16] Fagundes-Peters D, Martynyuk N, Lünstedt K, Peters V, Petermann K, Huber G, Basun S, Laguta V and Hofstaetter A 2007 J. Lumin. 125 238
[17] Sousa D F. de, Batalioto F, Bell M J V, Oliveira S L and Nunes L A O 2001 J. Appl. Phys. 90 3308
[18] Zharikov E V, Kuratev I I, Laptev V V, Naselskii S P, Ryabov A I, Toropkin G N, Shestakov A V and Shcherbakov I A 1984 Bull. Acad. Sci. USSR, Phys. Ser. 48 103
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[6] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[7] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[8] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[9] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[10] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[11] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[12] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[13] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[14] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[15] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
No Suggested Reading articles found!