Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054208    DOI: 10.1088/1674-1056/26/5/054208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-photon interconnector composed of two individual one-dimensional nano-waveguides and a single emitter

Xin-Qin Zhang(张新琴)1, Xiu-Wen Xia(夏秀文)1,2, Jing-Ping Xu(许静平)2, Ya-Ping Yang(羊亚平)2
1 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China;
2 MOE Key Laboratory of Advanced Micro-structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we introduce a single-photon interconnector composed of two individual nanowires and an optical N-type four-level emitter that can turn the optical connection on and off optically. Because of dipole-induced transmission at the single-photon level, a single photon can travel between the two nanowires reciprocally, which guarantees its application as an all-optical interconnector.
Keywords:  single-photon      nano-waveguide      optical interconnector  
Received:  01 November 2016      Revised:  16 December 2016      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701), and the Doctor Startup Fund of the Natural Science of Jinggangshan University, China (Grant No. JZB16003).
Corresponding Authors:  Xiu-Wen Xia     E-mail:  jgsuxxw@126.com

Cite this article: 

Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平) Single-photon interconnector composed of two individual one-dimensional nano-waveguides and a single emitter 2017 Chin. Phys. B 26 054208

[1] Monroe D 2014 Commun. ACM 57 13
[2] Kim N C, Ko M C and Choe C I 2015 Plasmonics 10 1447
[3] Shen H Z, Zhou Y H and Yi X X 2014 Phys. Rev. A 90 023849
[4] Shen Y, Bradford M and Shen J T 2011 Phys. Rev. Lett. 107 173902
[5] Pepino R A, Cooper J, Anderson D Z and Holland M J 2009 Phys. Rev. Lett. 103 140405
[6] Tiarks D, Baur S, Schneider K, Dürr S and Rempe G 2014 Phys. Rev. Lett. 113 053602
[7] Manzoni M T, Reiter F, Taylor J M and Sorensen A S 2014 Phys. Rev. B 89 180502
[8] Neumeier L, Leib M and Hartmann M J 2013 Phys. Rev. Lett. 111 063601
[9] Chen W, Beck K M, Buecker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletic V 2013 Science 341 768
[10] Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[11] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[12] Kuhlmann A V, Prechtel J H, Houel J, Ludwig A, Reuter D, Wieck A D and Warburton R J 2015 Nat. Commun. 6 8204
[13] Ballarini D, De Giorgi M, Cancellieri E, Houdré R, Giacobino E, Cingolani R, Bramati A, Gigli G and Sanvitto D 2013 Nat. Commun. 4 1778
[14] Zhang S, Liu C, Zhou S, Chuu C S, Loy M and Du S 2012 Phys. Rev. Lett. 109 263601
[15] Zhu W, Xiao X, Zhou D L and Zhang P 2016 Chin. Phys. B 25 235
[16] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[17] Shen J T and Fan S 2009 Phys. Rev. A 79 023838
[18] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[19] Lian T L, Feng J S, Xu W B and Wang B 2014 Chin. Phys. B 23 24202
[20] Wang D, Wu J Z and Zhang J X 2016 Chin. Phys. B 25 230
[21] Gu M, Kang L, Zhao Q Y, Jia T, Wan C, Xu R Y, Yang X Z, Wu P H, Zhang Y and Xia J S 2015 Chin. Phys. B 24 68501
[22] Chen Y, Wubs M, Mork J and Koenderink A F 2011 New J. Phys. 13 103010
[23] Le Kien F and Rauschenbeutel A 2016 Phys. Rev. A 93
[24] Mu-Tian C, Gen-Long Y, Wei-Wei Z, and Xiao-San M 2016 Chin. Phys. Lett. 33 024205
[25] Roulet A, Le H N and Scarani V 2016 Phys. Rev. A 93
[26] Guo X, Li C, Dong J, Liu B, Hu S and He Y 2016 Chin. Phys. B 25 114208
[27] Chen Y, Nielsen T R, Gregersen N, Lodahl P and Mork J 2010 Phys. Rev. B 81 125431
[28] Chen Y, Gregersen N, Nielsen T R, Mork J and Lodahl P 2010 Optics Express 18 12489
[29] Duan L M, Kuzmich A and Kimble H J 2003 Phys. Rev. A 67 032305
[30] Abramowitz M, Stegun I and Mcquarrie D A 1966 Am. J. Phys. 34 177
[31] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[32] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857
[33] Li X, Xie L and Wei L F 2015 Phys. Rev. A 92 063840
[34] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovic M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579
[35] Xia X, Xu J and Yang Y 2014 J. Opt. Soc. Am. B 31 2175
[36] Xia X, Xu J and Yang Y 2014 Phys. Rev. A 90 043857
[37] Xia X W, Zhang X Q, Xu J P and Yang Y P 2016 Chin. Phys. B 25
[38] Chau H F 2002 Phys. Rev. A 66 317
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[3] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[4] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[5] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[6] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[7] Dark count in single-photon avalanche diodes: A novel statistical behavioral model
Wen-Juan Yu(喻文娟), Yu Zhang(张钰), Ming-Zhu Xu(许明珠), Xin-Miao Lu(逯鑫淼). Chin. Phys. B, 2020, 29(4): 048503.
[8] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[9] Dark count rate and band to band tunneling optimization for single photon avalanche diode topologies
Taha Haddadifam, Mohammad Azim Karami. Chin. Phys. B, 2019, 28(6): 068502.
[10] All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires
Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Mu-Tian Cheng(程木田), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2019, 28(11): 114207.
[11] Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit
Ling-Quan Chen(陈灵泉), Yu-Bo Sheng(盛宇波), Lan Zhou(周澜). Chin. Phys. B, 2019, 28(1): 010302.
[12] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[13] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[14] Single-photon scattering by two separated atoms in a supercavity
Wei Zhu(朱伟), Xiao Xiao(肖骁), Duan-Lu Zhou(周端陆), Peng Zhang(张芃). Chin. Phys. B, 2016, 25(6): 064203.
[15] Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications
Qianqing Jiang(姜倩晴), Wuxia Li(李无瑕), Chengchun Tang(唐成春), Yanchun Chang(常彦春), Tingting Hao(郝婷婷), Xinyu Pan(潘新宇), Haitao Ye(叶海涛), Junjie Li(李俊杰), Changzhi Gu(顾长志). Chin. Phys. B, 2016, 25(11): 118105.
No Suggested Reading articles found!