Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118105    DOI: 10.1088/1674-1056/25/11/118105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications

Qianqing Jiang(姜倩晴)1,4,5, Wuxia Li(李无瑕)1, Chengchun Tang(唐成春)1, Yanchun Chang(常彦春)1,5, Tingting Hao(郝婷婷)1,5, Xinyu Pan(潘新宇)1,2, Haitao Ye(叶海涛)3, Junjie Li(李俊杰)1, Changzhi Gu(顾长志)1,2,5
1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China;
3 School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom;
4 Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China;
5 CAS Key Laboratory of Vacuum Physics, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Color centers in diamond are prominent candidates for generating and manipulating quantum states of light, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ, PMMA, and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source.

Keywords:  large scale fabrication      nitrogen vacancy      diamond      single-photon source  
Received:  24 June 2016      Revised:  15 August 2016      Accepted manuscript online: 
PACS:  81.16.-c (Methods of micro- and nanofabrication and processing)  
  87.85.Rs (Nanotechnologies-applications)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: 

Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0200402), the National Natural Science Foundation of China (Grants Nos. 11574369, 11574368, 91323304, 11174362, and 51272278), and the FP7 Marie Curie Action (project No. 295208) sponsored by the European Commission.

Corresponding Authors:  Changzhi Gu, Wuxia Li     E-mail:  liwuxia@iphy.ac.cn;czgu@iphy.ac.cn

Cite this article: 

Qianqing Jiang(姜倩晴), Wuxia Li(李无瑕), Chengchun Tang(唐成春), Yanchun Chang(常彦春), Tingting Hao(郝婷婷), Xinyu Pan(潘新宇), Haitao Ye(叶海涛), Junjie Li(李俊杰), Changzhi Gu(顾长志) Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications 2016 Chin. Phys. B 25 118105

[1] Brookes C A 1970 Nature 228 660
[2] Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault J C, Thorel A, Boudou J P, Curmi P A and Treussart F 2009 Acs Nano 3 3955
[3] Luo D, Wu L and Zhi J 2009 Acs Nano 3 2121
[4] Li L, Xu J, Xu L F, Li J J, Wang J T and Gu C Z 2015 Chin. Phys. B 24 056803
[5] Liu A P, Liu M, Yu J C, Qian G D and Tang W H 2015 Chin. Phys. B 24 056804
[6] Chen J Y, Zheng H F, Zhang H, Weng K N and Zeng Y S 2005 Physics 34 221(in Chinese)
[7] Fang C, Jia X P and Yan B M 2015 Acta Phys. Sin. 64 0228101(in Chinese)
[8] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[9] Robledo L, Childress L, Bernien H, Hensen B, AlkemadeP F and Hanson R 2011 Nature 477 574
[10] Bernien H, Childress L, Robledo L, Markham M, Twitchen D and Hanson R 2012 Phys. Rev. Lett. 108 043604
[11] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[12] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
[13] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J and Tissler J 2009 Nat. Mater. 8 383
[14] Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C 1997 Science 276 2012
[15] Dutt M V, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[16] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J and Jelezko F 2010 Science 329 542
[17] Buckley B B, Fuchs G D, Bassett L C and Awschalom D D 2010 Science 330 1212
[18] Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A and Hanson R 2011 Nature 477 574
[19] Zhang Q, Shi F Z and Du J F 2015 Physics 44 565
[20] Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M and Chai Y S 2015 Acta Phys. Sin. 64 0247802(in Chinese)
[21] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E and Zibrov A S 2008 Nature 455 644
[22] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tsisler J, Shin C, Kim C, Wojcik A, Hemmer P R and Krueger A 2008 Nature 455 648
[23] Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L and Jelezko F 2011 Nat. Phys. 7 459
[24] Liu G B, SunX P, Gu S H, Feng J W and Zhou X 2012 Physics 41 803
[25] Hausmann B J M, Khan M, Zhang Y, Babinec T M, Martinick K, McCutcheon M, Hemmer P R and Lončar M 2010 Diam. Relat. Mater. 19 621
[26] Baik E S, baik Y J, Lee S W and Jeon D 2000 Thin Solid Films 377 295
[27] Tao Y and Degen C 2013 Adv. Mater. 25 3962
[28] Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R and Loncar M 2010 Nat. Nanotech. 5 195
[29] Hsu C H and Xu J 2012 Nanoscale 4 5293
[30] Hausmann B J M, Khan M and Zhang Y 2010 Diamond and Related Materials 19 621
[31] Hausmann B J M, Babinec T M and Choy J T 2011 J. Phys. 13 045044
[32] Momenzadeh S A, Stoöhr R J and de Oliveira F F 2014 Nano Lett. 15 165
[33] Castelletto S, Harrison J P, Marseglia L, Stanley-Clarke A C, Gibson B C, Fairchild B A, Hadden J P, Ho Y L D, Hiscocks M P, Ganesan K, Huntington S T, Ladouceur F, Greentree A D, Prawer S, O'Brien J L and Rarity J G 2011 New J. Phys. 13 025020
[34] Toyli D M, Weis C D, Fuchs G D, Schenkel T and Awschalom D D 2010 Nano Lett. 10 3168
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[8] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[9] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[10] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[11] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[12] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[13] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[14] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[15] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
No Suggested Reading articles found!