Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078502    DOI: 10.1088/1674-1056/28/7/078502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector

Yong Wang(王勇)1,2,3, Hao Li(李浩)1,3, Li-Xing You(尤立星)1,3, Chao-Lin Lv(吕超林)1,2,3, He-Qing Wang(王河清)1,2,3, Xing-Yu Zhang(张兴雨)1,2,3, Wei-Jun Zhang(张伟君)1,3, Hui Zhou(周慧)1,3, Lu Zhang(张露)1,2,3, Xiao-Yan Yang(杨晓燕)1,3, Zhen Wang(王镇)1,3
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China
Abstract  

Superconducting nanowire single-photon detectors (SNSPDs) have attracted considerable attention owing to their excellent detection performance; however, the underlying physics of the detection process is still unclear. In this study, we investigate the wavelength dependence of the intrinsic detection efficiency (IDE) for NbN SNSPDs. We fabricate various NbN SNSPDs with linewidths ranging from 30 nm to 140 nm. Then, for each detector, the IDE curves as a function of bias current for different incident photon wavelengths of 510-1700 nm are obtained. From the IDE curves, the relations between photon energy and bias current at a certain IDE are extracted. The results exhibit clear nonlinear energy-current relations for the NbN detectors, indicating that a detection model only considering quasiparticle diffusion is unsuitable for the meander-type NbN-based SNSPDs. Our work provides additional experimental data on SNSPD detection mechanism and may serve as an interesting reference for further investigation.

Keywords:  niobium nitride      superconducting nanowire single-photon detectors      detection mechanism  
Received:  11 March 2019      Revised:  19 April 2019      Accepted manuscript online: 
PACS:  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61671438 and 61827823), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16JC1400402), Program of Shanghai Academic/Technology Research Leader, China (Grant No. 18XD1404600), and the Joint Research Fund in Astronomy (Grant No. U1631240) under Cooperative Agreement between the NSFC and the Chinese Academy of Sciences.

Corresponding Authors:  Hao Li, Li-Xing You     E-mail:  lihao@mail.sim.ac.cn;lxyou@mail.sim.ac.cn

Cite this article: 

Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇) Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector 2019 Chin. Phys. B 28 078502

[1] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
[2] Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B and Pan J W 2016 Phys. Rev. Lett. 117 190501
[3] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y and Pan J W 2017 Nature 549 43
[4] Robinson B S, Kerman A J, Dauler E A, Barron R O, Caplan D O, Stevens M L, Carney J J, Hamilton S A, Yang J K W and Berggren K K 2006 Opt. Lett. 31 444
[5] Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P and Xiong Y 2016 Opt. Lett. 41 3848
[6] Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J and Wu P 2017 Sci. Rep. 7 15113
[7] Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L and Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese)
[8] Zhou H, He Y H, Lu C L, You L X, Li Z H, Wu G, Zhang W J, Zhang L, Liu X Y, Yang X Y and Wang Z 2018 Chin. Phys. B 27 018501
[9] Yan X C, Zhu J, Zhang L B, Xing Q L, Chen Y J, Zhu H Q, Li J T, Kang L, Chen J and Wu P H 2017 Acta Phys. Sin. 66 198201 (in Chinese)
[10] Yamashita T, Liu D, Miki S, Yamamoto J, Haraguchi T, Kinjo M, Hiraoka Y, Wang Z and Terai H 2014 Opt. Express 22 28783
[11] Zhao Q Y, Zhu D, Calandri N, Dane A E, McCaughan A N, Bellei F, Wang H Z, Santavicca D F and Berggren K K 2017 Nat. Photon. 11 247
[12] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photon. 7 210
[13] Zhang W, You L, Li H, Huang J, Lv C, Zhang L, Liu X, Wu J, Wang Z and Xie X 2017 Sci. Chin. Phys. Mech. & Astron. 60 120314
[14] You L, Yang X, He Y, Zhang W, Liu D, Zhang W, Zhang L, Zhang L, Liu X, Chen S, Wang Z and Xie X 2013 AIP Adv. 3 072135
[15] Calandri N, Zhao Q Y, Zhu D, Dane A and Berggren K K 2016 Appl. Phys. Lett. 109 152601
[16] Cheng Y H, Gu C and Hu X L 2017 Appl. Phys. Lett. 111 062604
[17] Korzh B A, Zhao Q Y, Frasca S, Allmaras J P, Autry T M, Bersin E A, Colangelo M, Crouch G M, Dane A E, Gerrits T, Marsili F, Moody G, Ramirez E, Rezac J D, Stevens M J, Wollman E E, Zhu D, Hale P D, Silverman K L, Mirin R P, Nam S W, Shaw M D and Berggren K K 2018 arXiv: 1804.06839
[18] Semenov A, Engel A, Hübers H W, Il'in K and Siegel M 2005 Eur. Phys. J. B 47 495
[19] Bulaevskii L N, Graf M J, Batista C D and Kogan V G 2011 Phys. Rev. B 83 144526
[20] Bulaevskii L N, Graf M J and Kogan V G 2012 Phys. Rev. B 85 014505
[21] Renema J J, Frucci G, Zhou Z, Mattioli F, Gaggero A, Leoni R, de Dood M J A, Fiore A and van Exter M P 2013 Phys. Rev. B 87 174526
[22] Lusche R, Semenov A, Korneeva Y, Trifonov A, Korneev A, Gol'tsman G and Hübers H W 2014 Phys. Rev. B 89 104513
[23] Renema J J, Wang Q, Gaudio R, Komen I, op 't Hoog K, Sahin D, Schilling A, van Exter M P, Fiore A, Engel A and de Dood M J 2015 Nano Lett. 15 4541
[24] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
[25] Vodolazov D Y, Korneeva Y P, Semenov A V, Korneev A A and Goltsman G N 2015 Phys. Rev. B 92 104503
[26] Renema J J, Gaudio R, Wang Q, Zhou Z, Gaggero A, Mattioli F, Leoni R, Sahin D, de Dood M J A, Fiore A and van Exter M P 2014 Phys. Rev. Lett. 112 117604
[27] Gaudio R, Renema J J, Zhou Z, Verma V B, Lita A E, Shainline J, Stevens M J, Mirin R P, Nam S W, van Exter M P, de Dood M J A and Fiore A 2016 Appl. Phys. Lett. 109 031101
[28] Caloz M, Korzh B, Timoney N, Weiss M, Gariglio S, Warburton R J, Schönenberger C, Renema J, Zbinden H and Bussiéres F 2017 Appl. Phys. Lett. 110 083106
[1] Effect of deposition parameters on structural and mechanicalproperties of niobium nitride synthesized by plasma focus device
Jamil Siddiqui, Tousif Hussain, Riaz Ahmad, Nida Khalid. Chin. Phys. B, 2015, 24(6): 065204.
No Suggested Reading articles found!