|
|
Controlling a sine wave gating single-photon detector by exploiting its filtering loophole |
Lin-Xi Feng(冯林溪)1,2, Mu-Sheng Jiang(江木生)1,2, Wan-Su Bao(鲍皖苏)1,2, Hong-Wei Li(李宏伟)1,2, Chun Zhou(周淳)1,2, Yang Wang(汪洋)1,2 |
1 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract GHz single-photon detector (SPD) is a crucial part in the practical high speed quantum key distribution (QKD) system. However, any imperfections in a practical QKD system may be exploited by an eavesdropper (Eve) to collect information about the key without being discovered. The sine wave gating SPD (SG-SPD) based on InGaAs/InP avalanche photodiode, one kind of practical high speed SPD, may also contain loopholes. In this paper, we study the principle and characteristic of the SG-SPD and find out the filtering loophole of the SG-SPD for the first time. What is more, the proof-of-principle experiment shows that Eve could blind and control Bob's SG-SPD by exploiting this loophole. We believe that giving enough attention to this loophole can improve the practical security of the existing QKD system.
|
Received: 24 February 2018
Revised: 10 May 2018
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605248 and 61505261). |
Corresponding Authors:
Wan-Su Bao
E-mail: 2010thzz@sina.com
|
Cite this article:
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋) Controlling a sine wave gating single-photon detector by exploiting its filtering loophole 2018 Chin. Phys. B 27 080305
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computer Systems and Signal Processing (New York: IEEE) pp. 175-179
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 3121
|
[4] |
Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. Lett. 34 1
|
[5] |
Yuan Z L, Sharpe A W, Dynes J F, Dixon A R and Shields A J 2010 Appl. Phys. Lett. 96 18790
|
[6] |
Yuan Z L, Kardynal B E, Sharpe A W and Shields A J 2007 Appl. Phys. Lett. 91 175-179
|
[7] |
Restelli A, Bienfang J C and Migdall A L 2013 Appl. Phys. Lett. 102 141104
|
[8] |
Comandar L C, Fr ö hlich B, Dynes J F, Sharpe A W, Lucamarini M and Yuan Z L 2015 J. Appl. Phys. 117 045005
|
[9] |
Fujiwara M, Ishizuka H, Miki S, Yamashita T, Wang Z and Tanaka A, et al. 2011 Quantum Electronics Conference and Lasers and Electro-Optics, IEEE 19 507
|
[10] |
Acín A, Bloch I, Buhrman H, Calarco T, Eichler C and Eisert J, et al. 2017 arXiv: 1712.03773 [quant-ph]
|
[11] |
Jiang M S, Sun S H, Tang G Z, Ma X C, Li C Y and Liang L M 2013 Phys. Rev. A 88 062335
|
[12] |
Jiang M S, Sun S H, Li C Y and Liang L M 2012 Phys. Rev. A 86 197
|
[13] |
Yuan Z L, Dynes J F and Shields A J 2011 Appl. Phys. Lett. 98 057901
|
[14] |
Jiang M S, Sun S H, Li C Y and Liang L M 2014 J. Mod. Opt. 61 147
|
[15] |
Sauge S, Lydersen L, Anisimov A, Skaar J and Makarov V 2011 Opt. Express 19 23590
|
[16] |
Weier H, Krauss H, Rau M, Fuerst M, Nauerth S and Weinfurter H 2011 New J. Phys. 13 193
|
[17] |
Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 4702
|
[18] |
Tang Y L, Yin H L, Ma X Fung, C H F, Liu Y, Yong H L, Chen T Y, Peng C Z, Chen Z B and Pan J W 2013 Phys. Rev. A 88 5862
|
[19] |
Namekata N, Adachi S and Inoue S 2009 Opt. Express 17 6275
|
[20] |
Namekata N, Inoue S and Sasamori S 2006 Opt. Express 14) 10043
|
[21] |
Liang X L, Liu J H, Wang Q, Du D B, Ma J, Jin G, Chen Z B, Zhang J and Pan J W 2012 Rev. Sci. Instrum. 83 145
|
[22] |
Lydersen L, Jain N, Wittmann C, Ø Marøy, Skaar J, Marquardt C, Makarov V and Leuchs G 2011 Phys. Rev. A 84 2372
|
[23] |
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
|
[24] |
Koehlersidki A, Dynes J F, Lucamarini M, Roberts G L, Sharpe A W, Yuan Z L and Shields A J 2017 arXiv: 1712.06520 [quant-ph]
|
[25] |
Stipčević M 2014 arXiv: 1403.0143 [quant-ph]
|
[26] |
Wang J, Wang H, Qin X, Wei Z and Zhang Z 2016 Eur. Phys. J. D 70 1
|
[27] |
Mizutani A, Tamaki K, Ikuta R, Yamamoto T and Imoto N 2012 Phys. Rev. Lett. 108 130503
|
[28] |
Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 281
|
[29] |
Liu C Q, Zhu C H, Wang L H, Zhang L X and Pei C X 2016 Chin. Phys. Lett. 10 3
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|