Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054207    DOI: 10.1088/1674-1056/26/5/054207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice

Nuo Ba(巴诺)1, Xiang-Yao Wu(吴向尧)1, Dong-Fei Li(李东飞)1, Dan Wang(王丹)1, Jin-You Fei(费金有)1, Lei Wang(王磊)2
1 College of Physics, Jilin Normal University, Siping 136000, China;
2 College of Physics, Jilin University, Changchun 130012, China
Abstract  

A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence (SGC) is present, the remarkable contrast optical nonreciprocity of light transmission and reflection can be generated at each induced photonic bandgap in the optical lattice with a velocity of a few m/s. However, when the SGC effect is absent, the optical nonreciprocity becomes weak or even vanishing due to the strong absorption. It is found that the optical nonreciprocity is related to the asymmetric Doppler effect in transmission and reflection, meanwhile the degree and position of optical nonreciprocity can be tuned by the SGC effect and the Rabi frequency of the trigger field.

Keywords:  atomic coherence      optical nonreciprocity      atomic lattice      photonic band gap  
Received:  02 November 2016      Revised:  20 December 2016      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.70.Qs (Photonic bandgap materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11347137, 11247201, and 11247005) and the Twelfth Five-year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 20150215).

Corresponding Authors:  Nuo Ba     E-mail:  banuo2008@163.com

Cite this article: 

Nuo Ba(巴诺), Xiang-Yao Wu(吴向尧), Dong-Fei Li(李东飞), Dan Wang(王丹), Jin-You Fei(费金有), Lei Wang(王磊) Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice 2017 Chin. Phys. B 26 054207

[1] Oder T N, Shakya J, Lin J Y and Jiang H X 2003 Appl. Phys. Lett. 83 1231
[2] Wu X, Yamilov A, Liu X, Li S, Dravid V P, Chang R P H and Cao H 2004 Appl. Phys. Lett. 85 3657
[3] Istrate E and Sargent E H 2006 Rev. Mod. Phys. 78 455
[4] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[5] Artoni M and La Rocca G C 2006 Phys. Rev. Lett. 96 073905
[6] Wu J H, Artoni M and La Rocca G C 2008 J. Opt. Soc. Am. B. 25 1840
[7] Zhang Y, Liu Y M, Tian X D, Zheng T Y and Wu J H 2015 Phys. Rev. A 91 013826
[8] Zhang Y, Liu Y M, Han M, Wang G C, Cui C L and Zheng T Y 2014 Acta Phys. Sin. 63 224203 (in Chinese)
[9] Petrosyan D 2007 Phys. Rev. A 76 053823
[10] Schilke A, Zimmermann C, Courteille P W and Guerin W 2011 Phys. Rev. Lett. 106 223903
[11] Schilke A, Zimmermann C and Guerin W 2012 Phys. Rev. A 86 023809
[12] Yang H, Yang L, Wang X C, Cui C L, Zhang Y and Wu J H 2013 Phys. Rev. A 88 063832
[13] Ba N, Wang L and Zhang Y 2014 Acta Phys. Sin. 63 034209 (in Chinese)
[14] Wang D, Wu J Z and Zhang J X 2016 Chin. Phys. B 25 064202
[15] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[16] Horsley S A R, Wu J H, Artoni M and La Rocca G C 2013 Phys. Rev. Lett. 110 223602
[17] Serebryannikov A E 2009 Phys. Rev. B 80 155117
[18] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[19] Zaman T P, Guo X and Ram R J 2007 Appl. Phys. Lett. 90 023514
[20] Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L and Wu J H 2015 Phys. Rev. A 92 053859
[21] Sheng Y, Yang L, Yan X B, Wu J H and Cui C L 2015 Opt. Commun. 338 479
[22] Zhou H, Zhou K F, Hu W, Guo Q, Lan S, Lin X S and Gopal A V 2006 J. Appl. Phys. 99 123111
[23] Lin X S, Yan J H, Wu L J and Lan S 2008 Opt. Express 16 20949
[24] Alberucci A and Assanto G 2008 Opt. Lett. 33 1641
[25] Menon S and Argarwal G S 1998 Phys. Rev. A 57 4014
[26] Paspalakis E and Knight P L L 1998 Phys. Rev. Lett. 81 293
[27] Xu W H, Wu J H and Gao J Y 2002 Phys. Rev. A 66 063812
[28] Wu J H and Gao J Y 2002 Phys. Rev. A 65 063807
[29] Zhu S Y, Chan R C F and Lee C P 1995 Phys. Rev. A 52 710
[30] Kapale K T, Scully M O, Zhu S Y and Zubairy M S 2003 Phys. Rev. A 67 023804
[31] Xu W H, Wu J H and Gao J Y 2004 Eur. Phys. J. D 30 137
[32] Yang X H and Zhu S Y 2008 Phys. Rev. A 77 063822
[33] Gao J W, Zhang Y, Ba N, Cui C L and Wu J H 2010 Opt. Lett. 35 709
[34] Gao J W, Bao Q Q, Wan R G, Cui C L and Wu J H 2011 Phys. Rev. A 83 053815
[35] Yao Y P, Zhang T Y, Kou J and Wan R G 2013 Phys. Lett. A 377 1416
[36] Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 Phys. Rev. A 83 033824
[37] Ba N, Wang L, Wu X Y, Liu X J, Wang H H, Cui C L and Li A J 2013 Appl. Opt. 52 4264
[38] Ba N, Wang L, Wang H H, Li D F, Wang D and Yan L Y 2016 Acta Phys. Sin. 65 014201 (in Chinese)
[39] Dutt M V, Cheng J, Li B, Xu X, Li X, Berman P R, Steel D G, Bracker A S, Gammon D, Economou S E, Liu R B and Sham L J 2005 Phys. Rev. Lett. 94 227403
[40] Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, LaRocca G C and Bassani F 2005 Phys. Rev. Lett. 95 057401
[41] Ficek Z and Swain S 2004 Phys. Rev. A 69 023401
[42] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[43] Zhang Y, Liu Y M, Zheng T Y and Wu J H 2016 Phys. Rev. A 94 013836
[44] Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936
[1] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[4] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[5] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[6] Extreme narrow photonic passbands generated from defective two-segment-connected triangular waveguide networks
Tang Zhen-Xing (汤振兴), Yang Xiang-Bo (杨湘波), Lu Jian (卢剑), Liu Timon Cheng-Yi (刘承宜). Chin. Phys. B, 2014, 23(4): 044207.
[7] Comparison of entanglement trapping among different photonic band gap models
Zhang Ying-Jie (张英杰), Yang Xiu-Qin (杨秀芹), Han Wei (韩伟), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2013, 22(9): 090307.
[8] Characteristics of photonic bands generated by quadrangular multiconnected networks
Luo Rui-Fang (罗瑞芳), Yang Xiang-Bo (杨湘波), Lu Jian (卢剑), Liu Timon Cheng-Yi (刘承宜). Chin. Phys. B, 2013, 22(10): 104211.
[9] Preparation of steady-state entanglement via a laser-excited resonant interaction
Cheng Guang-Ling (程广玲), Chen Ai-Xi (陈爱喜), Geng Jun (耿珺), Zhong Wen-Xue (钟文学), Deng Li (邓黎). Chin. Phys. B, 2012, 21(8): 084206.
[10] Continuously tunable sub-half-wavelength localization via coherent control of spontaneous emission
Wang Fei (王飞), Gong Cheng (龚成), Tan Xin-Yu (谭新玉), Shi Wen-Xing (石文星 ). Chin. Phys. B, 2012, 21(11): 114206.
[11] A compact in-plane photonic crystal channel drop filter
Zhao Yi-Nan(赵铱楠), Li Ke-Zheng(李科铮), Wang Xue-Hua(王雪华), and Jin Chong-Jun (金崇君). Chin. Phys. B, 2011, 20(7): 074210.
[12] Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures
Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Qi Li-Mei(亓丽梅), Lan Feng(兰峰), Shi Zong-Jun(史宗君), Li Da-Zhi(李大治), and Liang Zheng(梁正). Chin. Phys. B, 2009, 18(6): 2452-2458.
[13] Coherence-enhanced entanglement between two atoms at high temperature
Hu Yao-Hua(胡要花), Fang Mao-Fa(方卯发), Jiang Chun-Lei(姜春蕾), and Zeng Ke(曾可). Chin. Phys. B, 2008, 17(5): 1784-1790.
[14] Atomic coherence control on the entanglement of two atoms in two-photon processes
Hu Yao-Hua(胡要花), Fang Mao-Fa(方卯发), and Wu Qin(吴琴). Chin. Phys. B, 2007, 16(8): 2407-2414.
[15] Existing conditions of full bandgaps and absolute negative refraction in metallic-dielectric photonic crystal
Dong Jian-Wen(董建文), Hu Xin-Hua(胡新华), and Wang He-Zhou(汪河洲). Chin. Phys. B, 2007, 16(4): 1057-1061.
No Suggested Reading articles found!