Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054204    DOI: 10.1088/1674-1056/26/5/054204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavefront reconstruction algorithm for wavefront sensing based on binary aberration modes

Boqing Pang(庞博清)1,2,3, Shuai Wang(王帅)1,3, Tao Cheng(程涛)1,2,3, Qingfeng Kong(孔庆峰)1,2,3,4, Lianghua Wen(文良华)1,2,3,5, Ping Yang(杨平)1,3
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 The Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
4 School of Optoelectronic information, University of Electronic Science and Technology of China, Chengdu 610209, China;
5 School of Physics and Electronic Engineering, Yibin University, Yibin 644000, China
Abstract  We propose a new algorithm for wavefront sensing based on binary intensity modulation. The algorithm is based on the fact that a wavefront can be expended with a series of orthogonal and binary functions, the Walsh series. We use a spatial light modulator (SLM) to produce different binary-intensity-modulation patterns which are the simple linear transformation of the Walsh series. The optical fields under different binary-intensity-modulation patterns are detected with a photodiode. The relationships between the incident wavefront modulated with the patterns and their optical fields are built to determinate the coefficients of the Walsh series. More detailed and strict relationship equations are established with the algorithm by adding new modulation patterns according to the properties of the Walsh functions. An exact value can be acquired by solving the equations. Finally, with the help of phase unwrapping and smoothing, the wavefront can be reconstructed. The advantage of the algorithm is providing an analytical solution for the coefficients of the Walsh series to reconstruct the wavefront. The simulation experiments are presented and the effectiveness of the algorithm is demonstrated.
Keywords:  wavefront sensing      binary aberration modes      Walsh functions      single detector  
Received:  26 October 2016      Revised:  10 January 2017      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.15.Fr (Aberrations)  
  42.30.Kq (Fourier optics)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Innovation Fund of Chinese Academy of Sciences (Grant No. CXJJ-16M208), the Preeminent Youth Fund of Sichuan Province, China (Grant No. 2012JQ0012), and the Outstanding Youth Science Fund of Chinese Academy of Sciences.
Corresponding Authors:  Ping Yang     E-mail:  pingyang2516@163.com

Cite this article: 

Boqing Pang(庞博清), Shuai Wang(王帅), Tao Cheng(程涛), Qingfeng Kong(孔庆峰), Lianghua Wen(文良华), Ping Yang(杨平) Wavefront reconstruction algorithm for wavefront sensing based on binary aberration modes 2017 Chin. Phys. B 26 054204

[1] Robert K Tyson 2011 Principles of Adaptive Optics (3rm rd Edn.) (London: CRC Press) p. 111
[2] Hardy J W 1978 Proc. IEEE 66 651
[3] Wang F L 2010 Appl. Opt. 49 G60
[4] He B, Hu L F, Li D Y, Xu H Y, Zhang X Y, Wang S X, Wang Y K, Yang C L, Cao Z L, Mu Q Q, Lu X H and Xuan L 2016 Chin. Phys. B 25 094214
[5] Liang J, Grimm B, Goelz S, and Bille J 1994 J. Opt. Soc. Am. A 11 1949
[6] Roddier F 1988 Appl. Opt. 27 1223
[7] Gonsalves R A and Chidlaw R 1979 Proc. SPIE 0207 Applications of Digital Image Processing III August 27, 1979, San Diego, America, p. 32
[8] Booth M J 2006 Opt. Express 14 1339
[9] Song H, Fraanje R, Schitter G, Kroese H, Vdovin G and Verhaegen M 2010 Opt. Express 18 24070
[10] Wang F L 2009 Appl. Opt. 48 2865
[11] Wang S, Yang P, Ao M W, Dong L and Xu B 2014 Appl. Opt. 53 8342
[12] Qiao N S, Cai X H and Yao C M 2009 Chin. Phys. B 18 4881
[13] Wang S, Yang P, Dong L, Xu B and Ao M W 2014 Proc. of SPIE XX International Symposium on High-Power Laser Systems and Applications August 25, 2014, Chengdu, China, 9255 92553C-1
[14] Noll R J 1976 J. Opt. Soc. Am. 66 207
[1] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[2] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[3] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[4] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[5] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[6] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[7] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[8] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[9] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[10] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[11] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[12] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[13] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[14] Paraxial propagation of cosh-Airy vortex beams in chiral medium
Xiao-Jin Yang(杨小锦), Zhen-Sen Wu(吴振森), Tan Qu(屈檀). Chin. Phys. B, 2020, 29(3): 034201.
[15] Far-field vector-diffraction of off-axis parabolic mirror under oblique incidence
Xia-Hui Zeng(曾夏辉), Xi-Yao Chen(陈曦曜). Chin. Phys. B, 2020, 29(3): 034202.
No Suggested Reading articles found!