ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Three-Airy autofocusing beams |
Xiao-Hong Zhang(张小红)1, Fei-Li Wang(王飞利)1, Lu-Yang Bai(白露阳)1, Ci-Bo Lou(楼慈波)1, Yi Liang(梁毅)2 |
1 Institute of Photonics, School of Physics Science and Technology, Ningbo University, Ningbo 315211, China; 2 Guangxi Key Laboratory for Relativistic Astrophysics, Center on Nanoenergy Research, School of Physics Science and Technology, Guangxi University, Nanning 530004, China |
|
|
Abstract We numerically and experimentally demonstrate that a three-Airy autofocusing beam can be generated by superposing three deformed two-dimensional (2D) Airy beams with a triangle symmetry. When the initial angle between two wings of the deformed 2D Airy beams increases, such a three-Airy autofocusing beam exhibits that the focusing length decreases and the intensity contrast at the focal point changes. Moreover, after introducing an optical vortex phase, this three-Airy autofocusing beam displays a transverse rotation in propagation. The rotation angle is determined by the topological charge of the vortex and the initial wing angle. Our results may have some potential applications in optical manipulation.
|
Received: 16 January 2020
Revised: 06 March 2020
Accepted manuscript online:
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
42.30.Kq
|
(Fourier optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604058), the Natural Science Foundation of Ningbo City, China (Grant No. ZX2015000617), the K C Wong Magna Fund in Ningbo University, China, and the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2016GXNSFBA380244 and 2015GXNSFBA139011). |
Corresponding Authors:
Ci-Bo Lou, Yi Liang
E-mail: loucibo@nbu.edu.cn;liangyi@gxu.edu.cn
|
Cite this article:
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅) Three-Airy autofocusing beams 2020 Chin. Phys. B 29 064204
|
[1] |
Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
|
[2] |
Bandres M A, Kaminer I, Mills M, Rodríguez-Lara B M, Greenfield E, Segev M and Christodoulides D N 2013 Opt. & Photon. News 24 30
|
[3] |
Efremidis N K, Chen Z G, Segev M and Christodoulides D N 2019 Optica 6 686
|
[4] |
Baumgartl J, Mazilu M and Dholakia K 2008 Nat. Photon. 2 675
|
[5] |
Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N and Chen Z G 2011 Opt. Lett. 36 2883
|
[6] |
Polynkin P, Kolesik M, Moloney J V, Siviloglou G A and Christodoulides D N 2009 Science 324 229
|
[7] |
Chong A, Renninger W H, Christodoulides D N and Wise F W 2010 Nat. Photon. 4 103
|
[8] |
Rose P, Diebel F, Boguslawski M and Denz C 2013 Appl. Phys. Lett. 102 101101
|
[9] |
Jia S, Vaughan J C and Zhuang X W 2014 Nat. Photon. 8 302
|
[10] |
Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, Čižmár T, Gunn-Moore F J and Dholakia K 2014 Nat. Methods 11 541
|
[11] |
Liang Y, Hu Y, Song D H, Lou C B, Zhang X Z, Chen Z G and Xu J J 2015 Opt. Lett. 40 5686
|
[12] |
Kondakci H E and Abouraddy A F 2017 Nat. Photon. 11 733
|
[13] |
Nylk J, McCluskey K, Preciado M A, Mazilu M, Yang Z Y, Gunn-Moore F J, Aggarwal S, Tello J A, Ferrier D E K and Dholakia K 2018 Sci. Adv. 4 eaar4817
|
[14] |
Clerici M, Hu Y, Lassonde P, Milián C, Couairon A, Christodoulides D N, Chen Z G, Razzari L, Vidal F, Légaré F, Faccio D and Morandotti R 2015 Sci. Adv. 1 e1400111
|
[15] |
Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A and Dudley J M 2012 Appl. Phys. Lett. 101 071110
|
[16] |
Salandrino A and Christodoulides D N 2010 Opt. Lett. 35 2082
|
[17] |
Zhang P, Wang S, Liu Y M, Yin X B, Lu C G, Chen Z G and Zhang X 2011 Opt. Lett. 36 3191
|
[18] |
Minovich A, Klein A E, Janunts N, Pertsch T, Neshev D N and Kivshar Y S 2011 Phys. Rev. Lett. 107 116802
|
[19] |
Zhang P, Li T C, Zhu J, Zhu X F, Yang S, Wang Y, Yin X B and Zhang X 2014 Nat. Commun. 5 4316
|
[20] |
Voloch-Bloch N, Lereah Y, Lilach Y, Gover A and Arie A 2013 Nature 494 331
|
[21] |
Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045
|
[22] |
Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842
|
[23] |
Chen B, Chen C D, Peng X, Peng Y L, Zhou M L and Deng D M 2015 Opt. Express 23 19288
|
[24] |
Chen X Y, Deng D M, Zhuang J L, Yang X B, Liu H Z and Wang G H 2018 Appl. Opt. 57 8418
|
[25] |
Chen X Y, Zhuang J L, Peng X L, Li D D, Zhang L P, Zhao F and Deng D M 2019 Opt. Laser Technol. 109 518
|
[26] |
Deng D M, Gao Y M, Zhao J Y, Zhang P and Chen Z G 2013 Opt. Lett. 38 3934
|
[27] |
Chen X Y, Deng D M, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F, Yang X B, Liu H Z and Wang G H 2018 Opt. Lett. 43 3626
|
[28] |
Zhang Z, Ye Z Y, Song D H, Zhang P and Chen Z 2013 Appl. Opt. 52 8512
|
[29] |
Liang Y, Hu Y, Ye Z Y, Song D H, Lou C B, Zhang X Z, Xu J J, Morandotti R and Chen Z G 2014 J. Opt. Soc. Am. A 31 1468
|
[30] |
Qian Y X and Dong L W 2015 Appl. Opt. 54 10487
|
[31] |
Chen Y K, Lin X W, Lin S Y, Mo S Y, Wan L Y and Liang Y 2017 Chin. Opt. Lett. 15 080801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|