Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046101    DOI: 10.1088/1674-1056/26/4/046101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical prediction of new C-Si alloys in C2/m-20 structure

Xiangyang Xu(徐向阳), Changchun Chai(柴常春), Qingyang Fan(樊庆扬), Yintang Yang(杨银堂)
State Key Discipline Laboratory of Wide BandGap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  We study structural, mechanical, and electronic properties of C20, Si20 and their alloys (C16Si4, C12Si8, C8Si12, and C4Si16) in C2/m structure by using density functional theory (DFT) based on first-principles calculations. The obtained elastic constants and the phonon spectra reveal mechanical and dynamic stability. The calculated formation enthalpy shows that the C-Si alloys might exist at a specified high temperature scale. The ratio of B/G and Poisson's ratio indicate that these C-Si alloys in C2/m-20 structure are all brittle. The elastic anisotropic properties derived by bulk modulus and shear modulus show slight anisotropy. In addition, the band structures and density of states are also depicted, which reveal that C20, C16Si4, and Si20 are indirect band gap semiconductors, while C8Si12 and C4Si16 are semi-metallic alloys. Notably, a direct band gap semiconductor (C12Si8) is obtained by doping two indirect band gap semiconductors (C20 and Si20).
Keywords:  C-Si alloys      mechanical properties      band structure      direct band gap semiconductor  
Received:  04 December 2016      Revised:  09 January 2017      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Cn (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474089) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214.XY.K).
Corresponding Authors:  Qingyang Fan     E-mail:  qyfan_xidian@163.com

Cite this article: 

Xiangyang Xu(徐向阳), Changchun Chai(柴常春), Qingyang Fan(樊庆扬), Yintang Yang(杨银堂) Theoretical prediction of new C-Si alloys in C2/m-20 structure 2017 Chin. Phys. B 26 046101

[1] Xing M J, Li B H, Yu Z T and Chen Q 2015 Commun. Theor. Phys. 64 237
[2] Wang J T, Chen C F and Kawazoe Y 2012 Phys. Rev. B 85 033410
[3] Wang J T, Chen C F and Kawazoe Y 2011 Phys. Rev. Lett. 106 075501
[4] Tian F, Dong X, Zhao Z S, He J L and Wang H T 2012 J. Phys.: Condens. Matter 24 165504
[5] Li D, Bao K, Tian F B, Zeng Z W, He Z, Liu B B and Cui T 2012 Phys. Chem. Chem. Phys. 14 4347
[6] Li Q K, Sun Y, Li Z Y and Zhou Y 2011 Scr. Mater. 65 229
[7] Zhou R L and Zeng X C 2012 J. Am. Chem. Soc. 134 7530
[8] He C Y, Sun L Z, Zhang C X, Peng X Y, Zhang K W and Zhong J X 2012 Solid State Commun. 152 1560
[9] Xu N, Li J F, Huang B L and Wang B L 2016 Chin. Phys. B 25 016103
[10] Sheng X L, Yan Q B, Ye F, Zheng Q R and Su G 2011 Phys. Rev. Lett. 106 155703
[11] Wei Q, Zhang M G, Yan H Y, Lin Z Z and Zhu X M 2014 Europhys. Lett. 107 27007
[12] Xu N, Li J F, Huang B L and Wang B L 2015 Chin. Phys. B 24 066102
[13] Fan Q Y, Chai C C, Wei Q, Yan H Y, Zhao Y B, Yang Y T, Yu X H, Liu Y, Xing M J, Zhang J Q and Yao R H 2015 J. Appl. Phys. 118 185704
[14] Nakashima S and Harima H 1997 Phys. Stat. Sol. 39 162
[15] Walter C and Oestreich M 2008 Angew. Chem. Int. Ed. 47 3818
[16] Han J C, Hu P, Zhang X H, Meng S H and Han W B 2008 Compos. Sci. Technol. 68 799
[17] Zimmermann J, Hilmas G and Fahrenholtz W 2008 Mater. Chem. Phys. 112 140
[18] Gasch M, Ellerby D, Irby E, Beckman S, Gusman M and Johnson S 2004 J. Mater. Sci. 39 5925
[19] Zhu S, Fahrenholtz W and Hilmas G 2007 J. Eur. Ceram. Soc. 27 2077
[20] Dou S X, Soltanian S, Horvat J, Wang X L, Zhou S H, Ionescu M and Liu H K 2002 Appl. Phys. Lett. 81 3419
[21] Guo S, Yang J, Tanaka H and Kagawa Y 2008 Compos. Sci. Technol. 68 3033
[22] Lomello F, Bonnefont G, Leconte Y, Herlin-Boime N and Fantozzi G 2012 J. Eur. Ceram. Soc. 32 633
[23] Wang R Z, Li W G, Li D Y and Fang D N 2015 J. Eur. Ceram. Soc. 35 2957
[24] Zhao M W and Zhang R Q 2014 Phys. Rev. B 89 195427
[25] Zhou L J, Zhang Y F and Wu L M 2013 Nano Lett. 13 5431
[26] Yan X, Xin Z H, Tian L J and Yu M 2015 Comput. Mater. Sci. 107 8
[27] Zhang Q, Wei Q, Yan H Y, Fan Q Y, Zhu X M, Zhang J Q and Zhang D Y 2016 Z. Naturforsch., A: Phys. Sci. 71 387
[28] Fan Q Y, Chai C C, Wei Q and Yang Y T 2016 Materials 9 333
[29] Tan L, Chai C C, Fan Q Y and Yang Y T 2016 Chin. J. Phys. 54 700
[30] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[31] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[34] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[35] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[36] Moukhorst J and Pack J D 1996 Phys. Rev. B 54 16533
[37] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[38] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[39] Swalin R A 1962 Thermodynamics of Solids (New York: Wiley) p. 243
[40] Hao X P and Cui H L 2014 J. Korean Phys. Soc. 65 45
[41] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner) p. 739
[42] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[43] Hill R 1952 Proc. Phys. Soc. London 65 349
[44] Pugh S F 1954 Philos. Mag. 45 823
[45] Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q and Zhang D Y 2014 Comput. Mater. Sci. 85 80
[46] Connétable D and Thomas O 2009 Phys. Rev. B 79 094101
[47] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[48] Panda K B and Ravi K S 2006 Comput. Mater. Sci. 35 134
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[6] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[9] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[10] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[11] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[14] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[15] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
No Suggested Reading articles found!