Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 045203    DOI: 10.1088/1674-1056/26/4/045203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of the Zeeman effect on Dα spectra on the EAST tokamak

Wei Gao(高伟), Juan Huang(黄娟), Chengrui Wu(吴承瑞), Zong Xu(许棕), Yumei Hou(侯玉梅), Zhao Jin(金钊), Yingjie Chen(陈颖杰), Pengfei Zhang(张鹏飞), Ling Zhang(张凌), Zhenwei Wu(吴振伟), EAST Team
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Based on the passive spectroscopy, the Dα atomic emission spectra in the boundary region of the plasma have been measured by a high resolution optical spectroscopic multichannel analysis (OSMA) system in EAST tokamak. The Zeeman splitting of the Dα spectral lines has been observed. A fitting procedure by using a nonlinear least squares method was applied to fit and analyze all polarization π and ±σ components of the Dα atomic spectra to acquire the information of the local plasma. The spectral line shape was investigated according to emission spectra from different regions (e.g., low-field side and high-field side) along the viewing chords. Each polarization component was fitted and classified into three energy categories (the cold, warm, and hot components) based on different atomic production processes, in consistent with the transition energy distribution by calculating the gradient of the Dα spectral profile. The emission position, magnetic field intensity, and flow velocity of a deuterium atom were also discussed in the context.
Keywords:  Zeeman effect      plasma      spectrum      deuterium  
Received:  28 November 2016      Revised:  17 January 2017      Accepted manuscript online: 
PACS:  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275231 and 11575249) and the National Magnetic Confinement Fusion Energy Research Program of China (Grant No. 2015GB110005).
Corresponding Authors:  Wei Gao, Juan Huang     E-mail:  gaowei@ipp.ac.cn;juan.huang@ipp.ac.cn

Cite this article: 

Wei Gao(高伟), Juan Huang(黄娟), Chengrui Wu(吴承瑞), Zong Xu(许棕), Yumei Hou(侯玉梅), Zhao Jin(金钊), Yingjie Chen(陈颖杰), Pengfei Zhang(张鹏飞), Ling Zhang(张凌), Zhenwei Wu(吴振伟), EAST Team Analysis of the Zeeman effect on Dα spectra on the EAST tokamak 2017 Chin. Phys. B 26 045203

[1] Neuhauser J, Schneider W, Wunderlich R and Lackner K 1984 Nucl. Fusion 24 39
[2] Stangeby P C and McCracken G M 1990 Nucl. Fusion 30 1225
[3] Groebner R J 1993 Phys. Fluids B 5 2343
[4] Monk R, Loarte A, Chankin A, Clement S, Davies S J, Ehrenberg J K, Guo H Y, Lingertat J, Matthews G F, Stamp M F and Stangeby P C 1997 J. Nucl. Mater. 241-243 396
[5] Hey J D, Lie Y T, Rusbüldt D and Hintz E 1994 Contrib. Plasma Phys. 6 725
[6] Hey J D, Korten M, Lie Y T, Pospieszczyk A, Rusbüldt D, Schweer B, Unterberg B, Wienbeck J and Hintz E 1996 Contrib. Plasma Phys. 5 583
[7] Hey J D, Chu C C and Mertens Ph 2002 Contrib. Plasma Phys. 42 635
[8] Hey J D, Chu C C and Mertens Ph 2002 Phys. Plasmas 645 26
[9] Blom A and Jupén C 2002 Plasma Phys. Control. Fusion 44 1229
[10] Carolan P, Forrest M, Peacock N and Trotman D 1985 JETP 85 05
[11] Benjamin R, Terry J and Moos H 1988 Phys. Rev. A 37 537
[12] Weaver J L, Welch B L, Griem H R, Terry J, Lipschultz B, Pitcher C S, Wolfe S, Pappas D A and Boswell C 2000 Rev. Sci. Instrum. 71 1664
[13] Welch B L, Weaver J L, Griem H R, Noonan W A, Terry J, Lipschultz B and Pitcher C S 2001 Phys. Plasmas 8 1253
[14] Shikama T, Kado S, Zushi H and Tanaka S 2004 Phys. Plasmas 11 4701
[15] Shikama T, Kado S, Zushi H, Sakamoto M and Iwamae A 2006 Plasma Phys. Control. Fusion 48 1125
[16] Shikama T, Kado S and Tanaka S 2007 Phys. Plasmas 14 072509
[17] Shikama T, Fujii K, Kado s, Zushi H, Sakamoto M, Iwamae A, Goto M, Morita S and Hasuo M 2011 Can. J. Phys. 89 495
[18] Goto M and Morita S 2002 Phys. Rev. E 65 026401
[19] Shikama T, Fujii K, Mizushiri K, Hasuo M, Kado s and Zushi H 2009 Plasma Phys. Control. Fusion 51 122001
[20] Bethe H A and Salpeter E E 1957 Quantum Mechanics of one-and two-electron atoms (Berlin: Springer-Verlag)
[21] Bransden B and Joachain C 1983 Physics of Atoms and Molecules (New York: Longman Scientific & Technical Publishers)
[22] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkely: University California Press)
[23] Xu W, Wan B N, Zhou Q, Wu Z W, Mao J S and Li J G 2004 Chin. Phys. 13 1510
[24] Ogawa T and Higo M 1979 Chem. Phys. Lett. 65 610
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[4] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[7] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[8] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[9] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[10] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[11] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[12] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[13] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[14] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[15] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
No Suggested Reading articles found!