Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126103    DOI: 10.1088/1674-1056/26/12/126103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations of structure and elasticity of hydrous fayalite under high pressure

Chuan-Yu Zhang(张传瑜)1, Xu-Ben Wang(王绪本)1, Xiao-Feng Zhao(赵晓凤)1, Xing-Run Chen(陈星润)1, You Yu(虞游)2, Xiao-Feng Tian(田晓峰)3
1. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China;
2. College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China;
3. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
Abstract  The structures, elasticities, sound velocities, and electronic properties of anhydrous and hydrous fayalite (Fe2SiO4 and Fe1.75H0.5SiO4) under high pressure have been investigated by means of the density functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy being taken into account (GGA+U). The optimized results show that H atoms prefer to substitute Fe atoms in the Fe1 site. Compared with the anhydrous fayalite Fe2SiO4, the mass density, elastic moduli, and sound velocities of Fe1.75H0.5SiO4 slightly decrease. According to our data, adding 2.3 wt% water into fayalite leads to reductions of compressional and shear wave velocities (VP and VS) by 3.4%-7.5% and 0.3%-3.4% at pressures from 0 GPa to 25 GPa, respectively, which are basically in agreement with the 2%-5% reductions of sound velocity obtained by the experimental measurement in the low velocity zones (LVZ). Based on the electronic structure, the valence and conduction bands are slightly broader for hydrous fayalite. However, hydrous fayalite keeps the insulation characteristics under the pressures up to 30 GPa, which indicates that hydration has little effect on its electronic structure.
Keywords:  hydrous fayalite      first-principles theory      crystal structure      elasticity  
Received:  14 June 2017      Revised:  11 September 2017      Accepted manuscript online: 
PACS:  61.82.Ms (Insulators)  
  63.20.dk (First-principles theory)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  91.60.Ba (Elasticity, fracture, and flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404042 and 11604029), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20135122120010), and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. JSWL2015KFZ02).
Corresponding Authors:  Chuan-Yu Zhang     E-mail:  zhangchuanyu10@cdut.cn

Cite this article: 

Chuan-Yu Zhang(张传瑜), Xu-Ben Wang(王绪本), Xiao-Feng Zhao(赵晓凤), Xing-Run Chen(陈星润), You Yu(虞游), Xiao-Feng Tian(田晓峰) First-principles calculations of structure and elasticity of hydrous fayalite under high pressure 2017 Chin. Phys. B 26 126103

[1] Martin R F and Donnay G 1972 Am. Mineral. 57 554
[2] Beran A and Putnis A 1983 Phys. Chem. Miner. 9 57
[3] Tarits P, Hautot S and Perrier F 2004 Geophys. Res. Lett. 31 265
[4] Rosa A D, Mezouar M, Garbarino G, Bouvier P, Ghosh S, Rohrbach A and Sanchez-Valle C 2013 J. Geophys. Res. 118 6124
[5] Balan E, Blanchard M, Lazzeri M and Ingrin 2014 Phys. Chem. Miner. 19 460
[6] Bindi L, Nidhi M, Tsuchiya J and Irifune T 2014 Am. Mineral. 99 1802
[7] Ghosh S and Schmidt M W 2014 Geochim. Cosmochim. Acta 145 72
[8] Ragozin A L, Karimova A A, Litasov K D, Zedgenizov D A and Shatsky V S 2014 Russ. Geol. Geophys. 55 428
[9] Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y and Nishijima M 2014 Earth Planet. Sci. Lett. 401 12
[10] Xu Z, Zheng Y F, Zhao Z F and Gong B 2014 Geochim. Cosmochim. Acta 143 285
[11] Ohtani E 2015 Chem. Geol. 418 6
[12] Green Ⅱ H W and Burnley P C 1989 Nature 341 733
[13] Frost D J and Dolejš D 2007 Earth Planet. Sci. Lett. 256 182
[14] Cornwell D G, Hetényi G and Blanchard T D 2011 Geophys. Res. Lett. 38 239
[15] Schmandt B, Jacobsen S D, Thorsten W, Becker T W, Liu Z X and Dueker K G 2014 Science 344 1265
[16] Karato S 2013 Phys. Earth Planet. Inter. 219 49
[17] Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 237 73
[18] Karato S 1990 Nature 347 272
[19] Wang D J, Mookherjee M, Xu Y S and Karato S I 2006 Nature 443 977
[20] Huang X, Xu Y S and Karato S 2005 Nature 434 746
[21] Manthilake M, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T 2009 Phys. Earth Planet. Inter. 174 10
[22] Yoshino T 2010 Surv. Geophys. 31 163
[23] Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B and Vincze L 2014 Nature 507 221
[24] Jacobsen S D, Jiang F, Mao Z, Duffy T S, Smyth J R, Holl C M, Frost D 2008 J. Geophys. Res. Lett. 35 L14303
[25] Wang D J, Sinogeikin S V, Inoue T and Bass J D 2006 Geophys. Res. Lett. 33 L14308
[26] Mao Z, Jacobsen S D, Jiang F M, Smyth J R, Holl C M, Frost D J and Duffy T S 2008 Earth Planet. Sci. Lett. 268 540
[27] Kudoh Y and Takeda H 1986 Physica B+C 139-140 333
[28] Andrault D, Bouhifd M A, Itié J P and Richet P 1995 Phys. Chem. Miner. 22 99
[29] Zhang L 1998 Phys. Chem. Miner. 25 308
[30] Fukizawa A, Kinoshita H 1982 J. Phys. Earth 30 245
[31] Sumino Y 1979 J. Phys. Earth 27 209
[32] Isaak D G, Graham E K, Bass J D and Wang H 1993 Pure Appl. Geophys. 141 393
[33] Graham E K, Schwab J A, Sopkin S M and Takei H 1988 Phys. Chem. Miner. 16 186
[34] Isaak D G, Anderson O L, Goto T and Suzuki I 1989 J. Geophys. Res. 94 5895
[35] Liu Q, Liu W, Whitaker M L, Wang L P and Li B S 2010 Am. Mineral. 95 1000
[36] Piekarz P, Jochym P T, Parlinski K and Lażewski J 2002 J. Chem. Phys. 117 3340
[37] Gillan M J, Alfe D, Brodholt J, Vo? cadlo L and Price G D 2006 Rep. Prog. Phys. 69 2365
[38] Liu L, Du J G, Zhao J J, Liu H, Wu D and Zhao F L 2008 Comput. Phys. Commun. 179 417
[39] Yu Y G, Vinograd V L, Winkler B and WentzcovitchR M 2013 Phys. Earth Planet. Inter. 217 36
[40] Wang K, Brodholt B and Lu X C 2015 Geochim. Cosmochim. Acta 156 145
[41] Zhang X L, Wu Y Y, Shao X H, Lu Y and Zhang P 2016 Chin. Phys. B 25 057102
[42] Gu J B, Wang C J, Zhang W X, Sun B, Liu G Q, Liu D D and Yang X D 2016 Chin. Phys. B 25 126103
[43] Zhang H J, Li S N, Zheng J J, Li W D and Wang B T 2017 Chin. Phys. B 26 066104
[44] Liu L, Du J G, Zhao J J, Liu H, Gao H L and Chen Y X 2009 Phys. Earth Planet Inter. 176 89
[45] Tsuchiya J 2013 Geophys. Res. Lett. 40 4570
[46] Tsuchiya J and Tsuchiya T 2009 J. Geophys. Res. 114 B02206
[47] Panero W R 2010 J. Geophys. Res. 115 B03203
[48] Wang D J, Karato S I and Liu Z Y 2012 Geophys. Res. Lett. 39 L06306
[49] Cococcioni M, Dal Corso A and de Gironcoli S 2003 Phys. Rev. B 67 094106
[50] Jiang X and Guo G Y 2004 Phys. Rev. B 69 155108
[51] Stackhouse S, Stixrude L and Karki B B 2010 Earth Planet. Sci. Lett. 289 449
[52] Liu L, Du J G, Liu W, Zhao J J and Liu H 2010 J. Phys. Chem. Solids 71 1094
[53] Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
[54] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[55] Speziale S, Duffy T S and Angel R J 2004 J. Geophys. Res. 109 B12202
[56] Williams Q, Knittle E, Reichlin R, Martin S and Jeanloz R 1990 J. Geophys. Res. 95 21549
[57] Kudou Y, Kuribayashi T, Kagi H and Inoue T 2006 J. Miner. Petrol. Sci. 101 265
[58] Hill R 1952 Proc. Phys. Soc. 65 349
[59] Hill D P 1972 Geol. Soc. Am. Bull. 83 1639
[60] Grand S P and Helmberger D V 1984 Geophys. J. R. Astronom. Soc. 76 399
[61] Priestley K F, Cipar J, Egorkin A, Pavlenkova N I 1994 Geophys. J. Int. 118 369
[62] Thybo H, Zhou S and Perchuc E 2000 Geophys. Res. Lett. 27 3953
[63] Artemieva I M 2003 Earth Planet. Sci. Lett. 213 431
[64] Gung Y, Panning M and Romanowicz B 2003 Nature 422 707
[65] Mierdel K, Keppler H, Smyth J R and Langenhorst F 2007 Science 315 364
[66] Shankland T J 1975 Phys. Earth Planet Inter. 10 209
[67] Mao H K and Bell P M 1972 Science 176 403
[68] Smith H G and Langer K 1982 Am. Mineral. 67 343
[69] Burns R G 1970 Am. Mineral. 55 1608
[70] Xu Y S, Poe B T, Shankland T J and Rubie D C 1998 Science 280 1415
[71] Fuess H, Ballet O, Lottermoser W, Ghose S, Coey J M D and Salje E 1988 Arthrosonographie (Berlin:Springer)
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[4] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[5] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[6] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[7] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[8] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[9] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[10] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[11] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[12] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[13] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[14] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[15] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
No Suggested Reading articles found!