Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124209    DOI: 10.1088/1674-1056/26/12/124209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coherently induced grating in refractive index enhanced medium

Zhuan-Zhuan Liu(刘撰撰), Yu-Yuan Chen(陈煜远), Jia-Yu Yuan(原佳宇), Ren-Gang Wan(万仁刚)
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  We demonstrate a scheme for coherently induced grating based on a mixture of two three-level atomic species interacting with two standing-wave fields. As a result of interaction between the absorptive and amplified Raman resonances, the refractive index of the medium can be enhanced and modulated periodically. Then a sinusoidal grating, which can diffract the probe field into high-order directions, is coherently formed in the medium. The proposed scheme is theoretically investigated in a mixture of atomic isotopes of rubidium. The results show that the diffraction efficiency depends strongly on the two two-photon detunings of the two Raman transitions and the intensities of the two driving standing-wave fields. The proposed electromagnetically induced grating scheme may be applied to the all-optical switching and beam splitting in optical networking and communication.
Keywords:  refractive index enhancement      electromagnetically induced grating      electromagnetically induced transparency      active Raman gain  
Received:  05 April 2017      Revised:  15 July 2017      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.65.An (Optical susceptibility, hyperpolarizability)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204367 and 61475191) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201503022 and GK201601008).
Corresponding Authors:  Ren-Gang Wan     E-mail:  wrg@snnu.edu.cn

Cite this article: 

Zhuan-Zhuan Liu(刘撰撰), Yu-Yuan Chen(陈煜远), Jia-Yu Yuan(原佳宇), Ren-Gang Wan(万仁刚) Coherently induced grating in refractive index enhanced medium 2017 Chin. Phys. B 26 124209

[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Dalton B J, McDuff R and Knight P L 1985 Opt. Acta 32 61
[4] Gray H R, Whitley R M and Stroud C R 1978 Opt. Lett. 3 218
[5] ZhuY F 1992 Phys. Rev. A 45 R6149
[6] Fry E S, Li X and Nikonov D 1993 Phys. Rev. Lett. 70 3235
[7] Scully M O 1991 Phys. Rev. Lett. 67 1855
[8] Proite N A, Unks B E, Green J T and Yavuz D D 2008 Phys. Rev. Lett. 101 147401
[9] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[10] Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S and Scully M O 1999 Phys. Rev. Lett. 82 5229
[11] Liu C, Dutton Z, Behroozi C H, and Hau L V 2001 Nature 409 490
[12] Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Phys. Rev. Lett. 95 063601
[13] Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
[14] Kang H and Zhu Y F 2003 Phys. Rev. Lett. 91 093601
[15] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[16] Huang G X, Deng L and Payne M G 2005 Phys. Rev. E 72 016617
[17] Ling H Y, Li Y Q and Xiao M 1998 Phys. Rev. A 57 1338
[18] Mitsunaga M and Imoto N 1999 Phys. Rev. A 59 4773
[19] Sheng J T, Wang J, Miri M A, Christodoulides D N and Xiao M 2015 Opt. Express 23 19777
[20] Zhai P W, Su X M and Gao J Y 2001 Phys. Lett. A 289 27
[21] Brown A W and Xiao M 2005 Opt. Lett. 30 699
[22] Zhao L, Duan W and Yelin S F 2010 Phys. Rev. A 82 013809
[23] Wen J M, Du S W, Chen H Y and Xiao M 2011 Appl. Phys. Lett. 98 081108
[24] Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B and Zhang Y P 2014 Phys. Rev. A 90 043846
[25] Zha X W, Yuan C Z and Zhang Y P 2013 Laser Phys. Lett. 10 045201
[26] Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M and Zhang Y P 2015 Laser Photon. Rev. 9 331
[27] de Araujo L E E 2010 Opt. Lett. 35 977
[28] Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 Phys. Rev. A 83 033824
[29] Zhou F X, Qi Y H, Sun H, Chen D J, Yang J, Niu Y P and Gong S Q 2013 Opt. Express 21 12249
[30] Cheng G L, Zhong W X, and Chen A X 2015 Opt. Express 23 9870
[31] Liu J B, Liu N, Shan C J, Liu T K, Li H, Zheng A S and Xie X T 2016 Phys. Lett. A 380 2458
[32] Xiao Z H, Shin S G and Kim K 2010 J. Phys. B:At. Mol. Opt. Phys. 43 161004
[33] Dong Y B and Guo Y H 2014 Chin. Phys. B 23 074204
[34] Liu Y, Wang P and Peng S Y 2013 Chin. Phys. B 22 104203
[35] Yu S, Liao P, Yang Z Y and Gu W Y 2013 Acta Phys. Sin. 62 224205(in Chinese)
[36] Kuang S Q, Jin C S and Li C 2011 Phys. Rev. A 84 033831
[37] Wang L, Zhou F X, Hu P D, Niu Y P and Gong S Q 2014 J. Phys. B:At. Mol. Opt. Phys. 47 225501
[38] Wu J C and Ai B Q 2015 J. Phys. B:At. Mol. Opt. Phys. 48 115504
[39] Wang L, Zhou F X, Guo H J, Niu Y P and Gong S Q 2016 Chin. Phys. B 25 114205
[40] Chen Y Y, Liu Z Z and Wan R G 2016 Europhys. Lett. 116 64006
[41] Chen Y Y, Liu Z Z and Wan R G 2017 Phys. Lett. A 381 1362
[42] Proite N A, Unks B E, Green J T and Yavuz D D 2008 Phys. Rev. Lett. 101 147401
[43] O'Brien C, Anisimov P M, Rostovtsev Y and Kocharovskaya O 2011 Phys. Rev. A 84 063835
[44] Hang C, Huang G X and Konotop V K 2013 Phys. Rev. Lett. 110 083604
[45] Pei L Y, Lu X G, Bai J H, Miao X X, Wang R Q, Wu L A, Ren S W, Jiao Z Y, Zhu H F, Fu P M and Zuo Z C 2013 Phys. Rev. A. 87 063822
[46] Dong Y B, Li J Y and Zhou Z Y 2017 Chin. Phys. B 26 014202
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[13] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[14] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[15] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
No Suggested Reading articles found!