Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 123104    DOI: 10.1088/1674-1056/26/12/123104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Anisotropic self-diffusion of fluorinated poly(methacrylate) in metal-organic frameworks assessed with molecular dynamics simulation

Tao Lu(鲁桃)1, Biao Xu(徐彪)1, Fei-Hong Ye(叶飞宏)1, Xin-Hui Zhou(周馨慧)3, Yun-Qing Lu(陆云清)1, Jin Wang(王瑾)1,2
1. School of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2. School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Abstract  Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monomer inside MOF is one of the key mechanisms. To investigate the diffusion mechanism of fluorinated polymer monomers in MOFs, in this paper the molecular dynamics simulations combined with the density functional theory and the Monte Carlo method are used and the all-atom models of TFMA (trifluoroethyl methacrylate) monomer and two types of MOFs,[Zn2(BDC)2(TED)]n and[Zn2(BPDC)2(TED)]n, are established. The diffusion behaviors of TFMA monomer in these two MOFs are simulated and the main influencing factors are analyzed. The obtained results are as follows. First, the electrostatic interactions between TFMA monomers and MOFs cause the monomers to concentrate in the MOF channel, which slows down the monomer diffusion. Second, the anisotropic shape of the one-dimensional MOF channel leads to different diffusion speeds of monomers in different directions. Third, MOF with a larger pore diameter due to a longer organic ligand,[Zn2(BPDC)2(TED)]n in this paper, facilitates the diffusion of monomers in the MOF channel. Finally, as the number of monomers increases, the self-diffusion coefficient is reduced by the steric effect.
Keywords:  fluorinated polymer      metal-organic framework      self-diffusion coefficient      molecular dynamics  
Received:  07 August 2017      Revised:  12 September 2017      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  66.30.Fq (Self-diffusion in metals, semimetals, and alloys)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61575096).
Corresponding Authors:  Yun-Qing Lu, Yun-Qing Lu     E-mail:  jinwang@njupt.edu.cn;luyq@njupt.edu.cn

Cite this article: 

Tao Lu(鲁桃), Biao Xu(徐彪), Fei-Hong Ye(叶飞宏), Xin-Hui Zhou(周馨慧), Yun-Qing Lu(陆云清), Jin Wang(王瑾) Anisotropic self-diffusion of fluorinated poly(methacrylate) in metal-organic frameworks assessed with molecular dynamics simulation 2017 Chin. Phys. B 26 123104

[1] Luo J and Lai Y 2014 Sci. Rep. 2014 4 5875
[2] Wu Q, Turpin J P and Werner D H 2012 Light Sci. Appl. 1 e38
[3] Bosc D, Maalouf A, Messaad K, et al. 2013 Opt. Mater. 35 1207
[4] Oh M C, Chu W S, Shin J S, et al. 2016 Opt. Commun. 362 3
[5] Thorkelsson K, Bai P and Xu T 2015 Nano Today 10 48
[6] Dou L, Zheng Y, Shen X, Wu G, Fields K, Hsu W C, Zhou H, Yang Y and Wudl F 2014 Science 343 272
[7] Stupp S I and Palmer L C 2013 Chem. Mater. 26 507
[8] Yang J S, Huang D H, Cao Q L, Li Q, Wang L Z and Wang F H 2013 Chin. Phys. B 22 098101
[9] Arakawa Y, Kuwahara H, Sakajiri K, Kang S, Tokita M and Konishi G I 2015 Liquid Cryst. 42 1419
[10] Distefano G, Suzuki H, Tsujimoto M, et al. 2013 Nat. Chem. 5 335
[11] Kaneti Y V, Tang J, Salunkhe R R, et al. 2017 Adv. Mater. 29
[12] Uemura T, Nakanishi R, Kaseda T, et al. 2014 Macromolecules 47 7321
[13] Groom C R and Allen F H 2014 Angew. Chem. Int. Ed. 53 662
[14] Prakash M, Jobic H, Ramsahye N A, et al. 2015 J. Phys. Chem. C 119
[15] Lee J Y, Pan L, Huang X, et al. 2011 Adv. Funct. Mater. 21 993
[16] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[17] Skoulidas A I and Sholl D S 2005 J. Phys. Chem. B 109 15760
[18] Imran M, Hussain F, Rashid M, et al. 2016 Chin. Phys. B 25 076601
[19] Asad A and Jiang-Tao W 2011 Chin. Phys. B 20 106601
[20] Takayanagi M, Pakhira S and Nagaoka M 2015 J. Phys. Chem. C 20 A47
[21] Ford D C, Dubbeldam D, Snurr R Q, et al. 2012 J. Phys. Chem. Lett. 3 930
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!