Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 123101    DOI: 10.1088/1674-1056/26/12/123101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering

Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani
Computational Nanophysics Laboratory(CNL), Department of Physics, University of Guilan, Rasht, P. O. Box 41335-1914, Iran
Abstract  In this study, the thermoelectric properties of pyrene molecule doped with boron and nitrogen atom at different sites of molecule are investigated using density functional theory and none-equilibrium Green's function formalism in the linear response regime. Our calculations show that when the impurities are added to the edge of the molecule, the anti-resonant peaks will appear in the transmission diagram in the vicinity of the Fermi energy level. So it increases the thermoelectric figure of merit of the system in comparison with the one that the impurity is located in the center of molecule. Additionally, the seebeck coefficient signs are not the same among the B, N, and N & B doped devices, indicating that the types of the carriers can be changed with different types of doping.
Keywords:  thermopower      pyrene      density functional theory      none-equilibrium Green's function method      doping  
Received:  03 May 2017      Revised:  13 June 2017      Accepted manuscript online: 
PACS:  31.15.E-  
  31.15.bt (Statistical model calculations (including Thomas-Fermi and Thomas-Fermi-Dirac models))  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  05.60.-k (Transport processes)  
Corresponding Authors:  Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani     E-mail:  mfj_ss@yahoo.com;m_baghei33@yahoo.com;rahimpour@guilan.ac.ir

Cite this article: 

Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering 2017 Chin. Phys. B 26 123101

[1] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[2] Dubi Y and Di Ventra M 2008 Nano Lett. 9 97
[3] Zhou J, Chen F and Xu B 2009 J. Am. Chem. Soc. 131 10439
[4] Xu B 2007 Small 3 2061
[5] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[6] Tsutsui M and Taniguchi M 2012 Sensors 12 7259
[7] Zimbovskaya N A and Pederson M R 2011 Phys. Rep. 509 1
[8] Leijnse M, Wegewijs M R and Flensberg K 2010 Phys. Rev. B 82 045412
[9] Tan A, Balachandran J, Sadat S, Gavini V, Dunietz B D, Jang S Y and Reddy P 2011 J. Am. Chem. Soc. 133 8838
[10] Tao N J 2006 Nat. Nanotechnol. 1 173
[11] Wang C K and Luo Y 2003 J. Chem. Phys. 119 4923
[12] Tan A, Sadat S and Reddy P 2010 Appl. Phys. Lett. 96 013110
[13] Reddy P, Jang SY, Segalman R A and Majumdar A 2007 Science 315 1568
[14] Thygesen K S 2008 Phys. Rev. Lett. 100 166804
[15] Zhang Z, Yang Z, Yuan J, Zhang H, Ming Q and Deng X 2009 Solid State Commun. 149 60
[16] Tan A, Sadat S and Reddy P 2010 Appl. Phys. Lett. 96 013110
[17] Darancet P, Widawsky J R, Choi H J, Venkataraman L and Neaton J B 2012 Nano Lett. 12 6250
[18] Wagner S, Kisslinger F, Ballmann S, Schramm F, Chandrasekar R, Bodenstein T, Fuhr O, Secker D, Fink K, Ruben M and Weber H B 2013 Nat. Nanotechnol. 8 575
[19] Zahid F, Ghosh A W, Paulsson M, Polizzi E and Datta S 2004 Phys. Rev. B 70 245317
[20] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568
[21] Paulsson M and Datta S 2003 Phys. Rev. B 67 241403
[22] Leijnse M, Wegewijs M R and Flensberg K 2010 Phys. Rev. B 82 045412
[23] Pauly F, Viljas J K, Brkle M, Dreher M, Nielaba P and Cuevas J C 2011 Phys. Rev. B 84 195420
[24] Dubi Y 2013 New J. Phys. 15 105004
[25] Bergfield J P, Solis M A and Stafford C A 2010 ACS Nano 4 5314
[26] Golsanamlou Z, Tagani M B and Soleimani H R 2015 Phys. Chem. Chem. Phys. 17 13466
[27] Vining C B 2009 Nat. Mater. 8 83
[28] Ke S H, Yang W, Curtarolo S and Baranger H U 2009 Nano Lett. 9 1011
[29] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
[30] Baranowski, L L, Warren E L and Toberer E S 2014 J. Electron. Mater. 43 2348
[31] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A and McEnaney K 2011 Nat. Mater. 10 532
[32] Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
[33] Zang Y, Li C Z, Chueh C C, Williams S T, Jiang W, Wang Z H, Yu J S and Jen A K Y 2014 Adv. Mater. 26 5708
[34] Xue Y and Ratner M A 2004 Phys. Rev. B 69 085403
[35] Chen F, Li X, Hihath J, Huang Z and Tao N 2006 J. Am. Chem. Soc. 128 15874
[36] Baheti K, Malen J A, Doak P, Reddy P, Jang S Y, Tilley T D, Majumdar A and Segalman R A 2008 Nano Lett. 8 715
[37] Kiguchi M, Nakamura H, Takahashi Y, Takahashi T and Ohto T 2010 J. Phys. Chem. C 114 22254
[38] Balachandran J, Reddy P, Dunietz B D and Gavini V 2012 J. Phys. Chem. Lett. 3 1962
[39] Taylor J, Brandbyge M and Stokbro K 2003 Phys. Rev. B 68 121101
[40] Ernzerhof M, Zhuang M and Rocheleau P 2005 J. Chem. Phys. 123 134704
[41] Finch C M, Garcia-Suarez V M and Lambert C J 2009 Phys. Rev. B 79 033405
[42] Stadler R and Markussen T 2011 J. Chem. Phys. 135 154109
[43] Nozaki D, Sevinli H, Li W, Gutirrez R and Cuniberti G 2010 Phys. Rev. B 81 235406
[44] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater. 12 719
[45] Ho P K, Kim J S, Burroughes J H, Becker H, Li S F, Brown T M Cacialli F and Friend R H 2000 Nature 404 481
[46] Chen D M, Shenai P M and Zhao Y 2011 Phys. Chem. Chem. Phys. 13 1515
[47] Bauschlicher C W, Ricca A, Xue Y and Ratner M A 2004 Chem. Phys. Lett. 390 246
[48] Rastkar A, Ghavami B, Jahanbin J, Afshari S and Yaghoobi M 2015 J. Comput. Electron. 14 619
[49] Zhang H, Zeng J and Chen K Q 2012 Physica E:Low-dimensional Systems and Nanostructures 44 1631
[50] Wang Y, Wang H, Liu Y, Di C A, Sun Y, Wu W, Yu G, Zhang D and Zhu D 2006 J. Am. Chem. Soc. 128 13058
[51] Xia C J, Liu D S, Liu H C and Zhai X J 2011 Physica E:Low-dimensional Systems and Nanostructures 43 1518
[52] Wu Q, Zhao P and Liu D 2016 RSC Adv. 6 16634
[53] Fan Z Q, Zhang Z H, Qiu M, Deng X Q and Tang G P 2012 Appl. Phys. Lett. 101 073104
[54] Widawsky J R, Darancet P, Neaton J B and Venkataraman L 2011 Nano Lett. 12 354
[55] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568
[56] Schneebeli S T, Kamenetska M, Cheng Z, Skouta R, Friesner R A, Venkataraman L and Breslow R 2011 J. Am. Chem. Soc. 133 2136
[57] Pai W W, Jeng H T, Cheng C M, Lin C H, Xiao X, Zhao A, Zhag X, Xu G, Shi X Q, Van Hove M A and Hsue C S 2010 Phys. Rev. Lett. 104 036103
[58] Soler J M, Artacho E, Gale J D, Garca A, Junquera, J, Ordejn P and Snchez-Portal D 2002 J. Phys.:Condens. Matter 14 2745
[59] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[60] An Y P, Yang C L, Wang M S, Ma X G and Wang D H 2009 J. Chem. Phys. 131 024311
[61] Zahid F, Paulsson M, Polizzi E, Ghosh A W, Siddiqui L and Datta S 2005 J. Chem. Phys. 123 064707
[62] Haug H and Jauho A P 2008 Quantum Kinetics in Transport and Optics of Semiconductors, pp. 181-212
[63] Golsanamlou Z, Vishkayi S I, Tagani M B and Soleimani H R 2014 Chem. Phys. Lett. 594 51
[64] Wang B, Xing Y, Wan L, Wei Y and Wang J 2005 Phys. Rev. B 71 233406
[65] Paulsson M and Datta S 2003 Phys. Rev. B 67 241403
[66] Liu Y S, Chen Y R and Chen Y C 2009 ACS Nano 3 3497
[67] Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B and Thong J T 2010 Nano Lett. 11 113
[68] Garca-Surez V M, Lambert C J, Manrique D Z and Wandlowski T 2014 Nanotechnology 25 205402
[69] Lv H Y, Liu H J, Pan L, Wen Y W, Tan X J, Shi J and Tang X F 2010 J. Phys. Chem. C 114 21234
[70] Brkle M, Hellmuth T J, Pauly F and Asai Y 2015 Phys. Rev. B 91 165419
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[8] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[13] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[14] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[15] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
No Suggested Reading articles found!