ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
An electrically tunable metasurface integrated with graphene for mid-infrared light modulation |
Zongpeng Wang(王宗鹏)1, Ya Deng(邓娅)2, LianFeng Sun(孙连峰)2 |
1. State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2. National Center for Nanoscience and Technology, Beijing 100871, China |
|
|
Abstract We propose a low-cost plasmonic metasurface integrated with single-layer graphene for dynamic modulation of mid-infrared light. The plasmonic metasurface is composed of an array of split magnetic resonators (MRs) where a nano slit is included. Extraordinary optical transmission (EOT) through the deep subwavelength slit is observed by excitation of magnetic plasmons in the split MRs. Furthermore, the introduction of the slit provides strongly enhanced fields around the graphene layer, leading to a large tuning effect on the EOT by changing the Fermi energy of the graphene. The proposed metasurface can be utilized as an optical modulator with a broad modulation width (15 μm) or an optical switch with a high on/off ratio (>100). Meanwhile, the overall thickness of the metasurface is 430 nm, which is tens of times smaller than the operating wavelength. This work may have potential applications in mid-infrared optoelectrical devices and give insights into reconfigurable flat optics and optoelectronics.
|
Received: 05 May 2017
Revised: 22 June 2017
Accepted manuscript online:
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174062 and 51472057). |
Corresponding Authors:
LianFeng Sun
E-mail: slf@nanoctr.cn
|
Cite this article:
Zongpeng Wang(王宗鹏), Ya Deng(邓娅), LianFeng Sun(孙连峰) An electrically tunable metasurface integrated with graphene for mid-infrared light modulation 2017 Chin. Phys. B 26 114101
|
[1] |
Meinzer N, Barnes W L and Hooper I R 2014 Nat. Photon. 8 889
|
[2] |
Yu N and Capasso F 2014 Nat. Mater. 13 139
|
[3] |
Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys. 79 076401
|
[4] |
Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Zet 2011 Science 334 333
|
[5] |
Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T and Guo G Y 2012 Nano Lett. 12 6223
|
[6] |
Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T and Zhang S 2013 Light-Sci. Appl. 2 e70
|
[7] |
Pors A, Nielsen M G, Eriksen R L and Bozhevolnyi S I 2013 Nano Lett. 13 829
|
[8] |
Li Y, Zhang J, Qu S, Wang J, Chen H, Xu Z and Zhang A 2014 Appl. Phys. Lett. 104 221110
|
[9] |
Lin D, Fan P, Hasman E and Brongersma M L 2014 Science 345 298
|
[10] |
Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C and Zhao Z 2015 Sci. Rep. 5 10365
|
[11] |
Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P and Valentine J 2014 Nano Lett. 14 1394
|
[12] |
Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K W and Qiu C W 2013 Nat. Commun. 4
|
[13] |
Ni X, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4
|
[14] |
Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H and Cheah K W 2015 Nat. Commun. 6
|
[15] |
Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T and Zhang S 2015 Nat. Nanotechnol. 10 308
|
[16] |
Chen P Y and Alú A 2010 Phys. Rev. B 82 235405
|
[17] |
Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F, Boehm G, Amann M C, Alu A and Belkin M A 2014 Nature 511 65
|
[18] |
Li G, Chen S, Pholchai N, Reineke B, Wong P W H, Pun E Y B, Cheah K W, Zentgraf T and Zhang S 2015 Nat. Mater. 14 607
|
[19] |
Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N and Kivshar Y S 2015 Laser Photonics Rev. 9 195
|
[20] |
Emani N K, Kildishev A V, Shalaev V M and Boltasseva A 2015 Nanophotonics 4 214
|
[21] |
Xu G, Huang C M, Tazawa M, Jin P and Chen D M 2008 J. Appl. Phys. 104 053101
|
[22] |
Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D, Ramanathan S and Capasso F 2013 Opt. Lett. 38 368
|
[23] |
Chiang Y L, Chen C W, Wang C H, Hsieh C Y, Chen Y T, Shih H Y and Chen Y F 2010 Appl. Phys. Lett. 96 041904
|
[24] |
Mahmoud M A 2015 J. Phys. Chem. C 119 19359
|
[25] |
Abb M, Albella P, Aizpurua J and Muskens O L 2011 Nano Lett. 11 2457
|
[26] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[27] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A 2010 Nat. Photon. 4 611
|
[28] |
Pang S, Hernandez Y, Feng X and Müllen K 2011 Adv. Mater. 23 2779
|
[29] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
|
[30] |
Liu M, Yin X and Zhang X 2012 Nano Lett. 12 1482
|
[31] |
Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
|
[32] |
Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
|
[33] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[34] |
Hu X and Wang J 2015 Opt. Lett. 40 5538
|
[35] |
Hu X, Long Y, Ji M, Wang A, Zhu L, Ruan Z, Wang Y and Wang J 2016 Opt. Express 24 7168
|
[36] |
Wang A, Hu X, Zhu L, Zeng M, Fu L and Wang J 2015 Opt. Express 23 31728
|
[37] |
Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L and Wang J 2016 Sci. Rep. 6
|
[38] |
Hu X and Wang J 2017 IEEE Photonics J. 9 1
|
[39] |
Hu X and Wang J 2017 IEEE J. Quantum Elect. 53 1
|
[40] |
Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater.
|
[41] |
Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
|
[42] |
Li Z and Yu N 2013 Appl. Phys. Lett. 102 131108
|
[43] |
Yao Y, Kats M A, Shankar R, Song Y, Kong J, Loncar M and Capasso F 2013 Nano Lett. 14 214
|
[44] |
Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
|
[45] |
Dabidian N, Kholmanov I, Khanikaev A B, Tatar K, Trendafilov S, Mousavi S H, Magnuson C, Ruoff R S and Shvets G 2015 ACS Photon. 2 216
|
[46] |
Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
|
[47] |
Wang J and Du J 2016 Appl. Sci. 6 239
|
[48] |
Hu C, Zhao Z, Chen X and Luo X 2009 Opt. Express 17 11039
|
[49] |
Dang H L, Nguyen H T, Bui S T, Le D T, Ngo Q M and Vu D L 2016 Adv. Nat. Sci-Nanosci. 7 015015
|
[50] |
Tuong P, Yoo Y, Park J, Kim Y, Kim K, Kim Y, Cheong H, Chen L and Lee Y 2015 Journal of Optics 17 125101
|
[51] |
Ordal M A, Bell R J, Alexander R W, Newquist L A and Querry M R 1988 Appl. Opt. 27 1203
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|