Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114101    DOI: 10.1088/1674-1056/26/11/114101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An electrically tunable metasurface integrated with graphene for mid-infrared light modulation

Zongpeng Wang(王宗鹏)1, Ya Deng(邓娅)2, LianFeng Sun(孙连峰)2
1. State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2. National Center for Nanoscience and Technology, Beijing 100871, China
Abstract  

We propose a low-cost plasmonic metasurface integrated with single-layer graphene for dynamic modulation of mid-infrared light. The plasmonic metasurface is composed of an array of split magnetic resonators (MRs) where a nano slit is included. Extraordinary optical transmission (EOT) through the deep subwavelength slit is observed by excitation of magnetic plasmons in the split MRs. Furthermore, the introduction of the slit provides strongly enhanced fields around the graphene layer, leading to a large tuning effect on the EOT by changing the Fermi energy of the graphene. The proposed metasurface can be utilized as an optical modulator with a broad modulation width (15 μm) or an optical switch with a high on/off ratio (>100). Meanwhile, the overall thickness of the metasurface is 430 nm, which is tens of times smaller than the operating wavelength. This work may have potential applications in mid-infrared optoelectrical devices and give insights into reconfigurable flat optics and optoelectronics.

Keywords:  metasurface      graphene      optical modulator      magnetic plasmon  
Received:  05 May 2017      Revised:  22 June 2017      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174062 and 51472057).

Corresponding Authors:  LianFeng Sun     E-mail:  slf@nanoctr.cn

Cite this article: 

Zongpeng Wang(王宗鹏), Ya Deng(邓娅), LianFeng Sun(孙连峰) An electrically tunable metasurface integrated with graphene for mid-infrared light modulation 2017 Chin. Phys. B 26 114101

[1] Meinzer N, Barnes W L and Hooper I R 2014 Nat. Photon. 8 889
[2] Yu N and Capasso F 2014 Nat. Mater. 13 139
[3] Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys. 79 076401
[4] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Zet 2011 Science 334 333
[5] Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T and Guo G Y 2012 Nano Lett. 12 6223
[6] Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T and Zhang S 2013 Light-Sci. Appl. 2 e70
[7] Pors A, Nielsen M G, Eriksen R L and Bozhevolnyi S I 2013 Nano Lett. 13 829
[8] Li Y, Zhang J, Qu S, Wang J, Chen H, Xu Z and Zhang A 2014 Appl. Phys. Lett. 104 221110
[9] Lin D, Fan P, Hasman E and Brongersma M L 2014 Science 345 298
[10] Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C and Zhao Z 2015 Sci. Rep. 5 10365
[11] Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P and Valentine J 2014 Nano Lett. 14 1394
[12] Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K W and Qiu C W 2013 Nat. Commun. 4
[13] Ni X, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4
[14] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H and Cheah K W 2015 Nat. Commun. 6
[15] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T and Zhang S 2015 Nat. Nanotechnol. 10 308
[16] Chen P Y and Alú A 2010 Phys. Rev. B 82 235405
[17] Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F, Boehm G, Amann M C, Alu A and Belkin M A 2014 Nature 511 65
[18] Li G, Chen S, Pholchai N, Reineke B, Wong P W H, Pun E Y B, Cheah K W, Zentgraf T and Zhang S 2015 Nat. Mater. 14 607
[19] Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N and Kivshar Y S 2015 Laser Photonics Rev. 9 195
[20] Emani N K, Kildishev A V, Shalaev V M and Boltasseva A 2015 Nanophotonics 4 214
[21] Xu G, Huang C M, Tazawa M, Jin P and Chen D M 2008 J. Appl. Phys. 104 053101
[22] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D, Ramanathan S and Capasso F 2013 Opt. Lett. 38 368
[23] Chiang Y L, Chen C W, Wang C H, Hsieh C Y, Chen Y T, Shih H Y and Chen Y F 2010 Appl. Phys. Lett. 96 041904
[24] Mahmoud M A 2015 J. Phys. Chem. C 119 19359
[25] Abb M, Albella P, Aizpurua J and Muskens O L 2011 Nano Lett. 11 2457
[26] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[27] Bonaccorso F, Sun Z, Hasan T and Ferrari A 2010 Nat. Photon. 4 611
[28] Pang S, Hernandez Y, Feng X and Müllen K 2011 Adv. Mater. 23 2779
[29] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[30] Liu M, Yin X and Zhang X 2012 Nano Lett. 12 1482
[31] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[32] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
[33] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[34] Hu X and Wang J 2015 Opt. Lett. 40 5538
[35] Hu X, Long Y, Ji M, Wang A, Zhu L, Ruan Z, Wang Y and Wang J 2016 Opt. Express 24 7168
[36] Wang A, Hu X, Zhu L, Zeng M, Fu L and Wang J 2015 Opt. Express 23 31728
[37] Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L and Wang J 2016 Sci. Rep. 6
[38] Hu X and Wang J 2017 IEEE Photonics J. 9 1
[39] Hu X and Wang J 2017 IEEE J. Quantum Elect. 53 1
[40] Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater.
[41] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
[42] Li Z and Yu N 2013 Appl. Phys. Lett. 102 131108
[43] Yao Y, Kats M A, Shankar R, Song Y, Kong J, Loncar M and Capasso F 2013 Nano Lett. 14 214
[44] Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
[45] Dabidian N, Kholmanov I, Khanikaev A B, Tatar K, Trendafilov S, Mousavi S H, Magnuson C, Ruoff R S and Shvets G 2015 ACS Photon. 2 216
[46] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[47] Wang J and Du J 2016 Appl. Sci. 6 239
[48] Hu C, Zhao Z, Chen X and Luo X 2009 Opt. Express 17 11039
[49] Dang H L, Nguyen H T, Bui S T, Le D T, Ngo Q M and Vu D L 2016 Adv. Nat. Sci-Nanosci. 7 015015
[50] Tuong P, Yoo Y, Park J, Kim Y, Kim K, Kim Y, Cheong H, Chen L and Lee Y 2015 Journal of Optics 17 125101
[51] Ordal M A, Bell R J, Alexander R W, Newquist L A and Querry M R 1988 Appl. Opt. 27 1203
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[12] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[13] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!