|
|
Tuning the velocity and flux of a low-velocity intense source of cold atomic beam |
Shu Chen(陈姝)1, Ying-Ying Li(李营营)1, Xue-Shu Yan(颜学术)1, Hong-Bo Xue(薛洪波)2, Yan-Ying Feng(冯焱颖)1 |
1. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China; 2. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We investigate experimentally and numerically the quantitative dependence of characteristics of a low-velocity intensity source (LVIS) of atomic beam on light parameters, especially the polarization of cooling laser along the atomic beam axis (pushing beam). By changing the polarization of the pushing beam, the longitudinal mean velocity of a rubidium atomic beam can be tuned continuously from 10 to 20 m/s and the flux can range from 3×108 to 1×109 atoms/s, corresponding to the maximum sensitivity of the velocity with respect to the polarization angle of 20 (m/s)/rad and the mean sensitivity of flux of 1.2×109 (atoms/s)/rad. The mechanism is explained with a Monte-Carlo based numerical simulation method, which shows a qualitative agreement with the experimental result. This is also a demonstration of a method enabling the fast and continuous modulation of a low-velocity intense source of cold atomic beam on the velocity or flux, which can be used in many fields, like the development of a cold atomic beam interferometer and atom lithography.
|
Received: 03 June 2017
Revised: 03 August 2017
Accepted manuscript online:
|
PACS:
|
37.20.+j
|
(Atomic and molecular beam sources and techniques)
|
|
37.10.De
|
(Atom cooling methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473166 and 41404146). |
Corresponding Authors:
Yan-Ying Feng
E-mail: yyfeng@tsinghua.edu.cn
|
Cite this article:
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖) Tuning the velocity and flux of a low-velocity intense source of cold atomic beam 2017 Chin. Phys. B 26 113703
|
[1] |
Phillips W D and Metcalf H 1982 Phys. Rev. Lett. 48 596
|
[2] |
Wineland D J, Itano W M, Bergquist J C and Hulet R G 1987 Phys. Rev. A 36 2220
|
[3] |
Gtz S, Hltkemeier B, Hofmann C S, Litsch D, DePaola B D and Weidemller M 2012 Rev. Sci. Instrum. 83 073112
|
[4] |
Park S E, Lee H S, Shin E J, Kwon T Y, Yang S H and Cho H 2002 J. Opt. Soc. Am. B 19 2595
|
[5] |
Devenoges L, Stefanov A, Joyet A, Thomann P and Domenico G D 2012 IEEE. T. Ultrason. Ferr. 59 211
|
[6] |
Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook C I and Aspect A 2001 Science 292 461
|
[7] |
van der Stam K M R, van Ooijen E D, Meppelink R, Vogels J M and van der Straten P 2007 Rev. Sci. Instrum. 78 013102
|
[8] |
Berman P R 1997 Atom Interferometry (Academic Press) p. 107
|
[9] |
Mueller T, Wendrich T, Gilowski M, Jentsch C, Rasel E M and Ertmer W 2007 Phys. Rev. A 76 063611
|
[10] |
Xu Z, Wei R and Wang Y Z 2008 Physics 37 0
|
[11] |
Li R B, Wang J and Zhan M S 2008 Physics 37 652
|
[12] |
Wang Q Y, Wang Z Y, Fu Z J and Lin Q 2016 Chin. Phys. B 25 123701
|
[13] |
Lee C J 2000 Phys. Rev. A 61 063604
|
[14] |
Xue H, Feng Y, Chen S, Wang X, Yan X, Jiang Z and Zhou Z 2015 J. Appl. Phys. 117 094901
|
[15] |
Paris-Mandoki A, Jones M D, Nute J, Wu J, Warriar S and Hackermller L 2014 Rev. Sci. Instrum. 85 113103
|
[16] |
Yang W, Sun D L, Zhou L, Wang J and Zhan M S 2014 Acta Phys. Sin. 63 153701(in Chinese)
|
[17] |
Ertmer W, Blatt R, Hall J L and Zhu M 1985 Phys. Rev. Lett. 54 996
|
[18] |
Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 022001
|
[19] |
Ketterle W, Martin A, Joffe M A and Pritchard D E 1992 Phys. Rev. Lett. 69 2483
|
[20] |
Zhu M, Oates C W and Hall J L 1991 Phys. Rev. Lett. 67 46
|
[21] |
Riis E, Weiss D S, Moler K A and Chu S 1990 Phys. Rev. Lett. 64 1658
|
[22] |
Swanson T B, Silva N J, Mayer S K, Maki J J and McIntyre D H 1996 J. Opt. Soc. Am. B 13 1833
|
[23] |
Weyers S, Aucouturier E, Valentin C and Dimarcq N 1997 Opt. Commun. 143 30
|
[24] |
Schoser J, Batr A, Lw R, Schweikhard V, Grabowski A, Ovchinnikov Y B and Pfau T 2002 Phys. Rev. A 66 023410
|
[25] |
Wang X L, Cheng B, Wu B, Wang Z Y and Lin Q 2011 Chin. Phys. Lett. 28 053701
|
[26] |
Dieckmann K, Spreeuw R J C, Weidemller M and Walraven J T M 1998 Phys. Rev. A 58 3891
|
[27] |
Conroy R S, Xiao Y, Vengalattore M, Rooijakkers W and Prentiss M 2003 Opt. Commun. 226 259
|
[28] |
Ovchinnikov Y B 2005 Opt. Commun. 249 473
|
[29] |
Catani J, Maioli P, De Sarlo L, Minardi F and Inguscio M 2006 Phys. Rev. A 73 033415
|
[30] |
Ramirez-Serrano J, Yu N, Kohel J M, Kellogg J R and Maleki L 2006 Opt. Lett. 31 682
|
[31] |
Kellogg J R, Schlippert D, Kohel J M, Thompson R J, Aveline D C and Yu N 2012 Appl. Phys. B 109 61
|
[32] |
Rathod K D, Singh A K and Natarajan V 2013 EPL 102 43001
|
[33] |
Chanu S R, Rathod K D and Natarajan V 2016 Phys. Lett. A 380 2943
|
[34] |
Chaudhuri S, Roy S and Unnikrishnan C S 2006 Phys. Rev. A 74 023406
|
[35] |
Fang J, Qi L, Zhang Y, Wang T, Li H, Hu Z and Quan W 2015 J. Opt. Soc. Am. B 32 B61
|
[36] |
Park S J, Noh J and Mun J 2012 Opt. Commun. 285 3950
|
[37] |
Pruvost L, Marescaux D, Houde O and Duong H T 1999 Opt. Commun. 166 199
|
[38] |
Carrat V, Cabrera-Gutirrez C, Jacquey M, Tabosa J W, de Lesegno B V and Pruvost L 2014 Opt. Lett. 39 719
|
[39] |
Huang J Q, Yan X S, Wu C F, Zhang J W and Wang L J 2016 Chin. Phys. B 25 063701
|
[40] |
Lu Z T, Corwin K L, Renn M J, Anderson M H, Cornell E A and Wieman C E 1996 Phys. Rev. Lett. 77 3331
|
[41] |
Arlt J, Marag O, Webster S, Hopkins S and Foot C 1998 Opt. Commun. 157 303
|
[42] |
Camposeo A, Piombini A, Cervelli F, Tantussi F and Fuso F 2001 Opt. Commun. 200 231
|
[43] |
Kohel J M, Ramirez-Serrano J, Thompson R J, Maleki L, Bliss J L and Libbrecht K G 2003 J. Opt. Soc. Am. B 20 1161
|
[44] |
Yang T, Pandey K, Pramod M S, Leroux F, Kwong C C, Hajiyev E, Chia Z Y, Fang B and Wilkowski D 2015 Eur. Phys. J. D 69 226
|
[45] |
Swansson J, Dall R and Truscott A 2006 Appl. Phys. B 86 485
|
[46] |
Liu J P, Hou S Y, Wei B and Yin J P 2015 Acta Phys. Sin. 64 173701(in Chinese)
|
[47] |
Wang H and Buell W F 2003 J. Opt. Soc. Am. B 20 2025
|
[48] |
Taillandier-Loize T, Aljunid S A, Correia F, Fabre N, Perales F, Tualle J M, Baudon J, Ducloy M and Dutier G 2016 J. Phys. D 49 135503
|
[49] |
Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and Chu S 1991 Phys. Rev. Lett. 66 2297
|
[50] |
Feng Y Y, Xue H B, Wang X J, Chen S and Zhou Z Y 2014 Appl. Phys. B 118 139
|
[51] |
Xue H B, Feng Y Y, Wang X J, Chen S and Zhou Z Y 2013 Rev. Sci. Instrum. 84 046104
|
[52] |
Moler K, Weiss D S, Kasevich M and Chu S 1992 Phys. Rev. A 45 342
|
[53] |
Gustavson T L 2000 Precision Rotation Sensing Using Atom Interferometry (Ph. D. Thesis)(Stanford:Stanford University)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|