Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 113703    DOI: 10.1088/1674-1056/26/11/113703
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Tuning the velocity and flux of a low-velocity intense source of cold atomic beam

Shu Chen(陈姝)1, Ying-Ying Li(李营营)1, Xue-Shu Yan(颜学术)1, Hong-Bo Xue(薛洪波)2, Yan-Ying Feng(冯焱颖)1
1. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate experimentally and numerically the quantitative dependence of characteristics of a low-velocity intensity source (LVIS) of atomic beam on light parameters, especially the polarization of cooling laser along the atomic beam axis (pushing beam). By changing the polarization of the pushing beam, the longitudinal mean velocity of a rubidium atomic beam can be tuned continuously from 10 to 20 m/s and the flux can range from 3×108 to 1×109 atoms/s, corresponding to the maximum sensitivity of the velocity with respect to the polarization angle of 20 (m/s)/rad and the mean sensitivity of flux of 1.2×109 (atoms/s)/rad. The mechanism is explained with a Monte-Carlo based numerical simulation method, which shows a qualitative agreement with the experimental result. This is also a demonstration of a method enabling the fast and continuous modulation of a low-velocity intense source of cold atomic beam on the velocity or flux, which can be used in many fields, like the development of a cold atomic beam interferometer and atom lithography.
Keywords:  atomic source      low-velocity intensity source (LVIS)      laser cooling      light polarization  
Received:  03 June 2017      Revised:  03 August 2017      Accepted manuscript online: 
PACS:  37.20.+j (Atomic and molecular beam sources and techniques)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473166 and 41404146).
Corresponding Authors:  Yan-Ying Feng     E-mail:  yyfeng@tsinghua.edu.cn

Cite this article: 

Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖) Tuning the velocity and flux of a low-velocity intense source of cold atomic beam 2017 Chin. Phys. B 26 113703

[1] Phillips W D and Metcalf H 1982 Phys. Rev. Lett. 48 596
[2] Wineland D J, Itano W M, Bergquist J C and Hulet R G 1987 Phys. Rev. A 36 2220
[3] Gtz S, Hltkemeier B, Hofmann C S, Litsch D, DePaola B D and Weidemller M 2012 Rev. Sci. Instrum. 83 073112
[4] Park S E, Lee H S, Shin E J, Kwon T Y, Yang S H and Cho H 2002 J. Opt. Soc. Am. B 19 2595
[5] Devenoges L, Stefanov A, Joyet A, Thomann P and Domenico G D 2012 IEEE. T. Ultrason. Ferr. 59 211
[6] Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook C I and Aspect A 2001 Science 292 461
[7] van der Stam K M R, van Ooijen E D, Meppelink R, Vogels J M and van der Straten P 2007 Rev. Sci. Instrum. 78 013102
[8] Berman P R 1997 Atom Interferometry (Academic Press) p. 107
[9] Mueller T, Wendrich T, Gilowski M, Jentsch C, Rasel E M and Ertmer W 2007 Phys. Rev. A 76 063611
[10] Xu Z, Wei R and Wang Y Z 2008 Physics 37 0
[11] Li R B, Wang J and Zhan M S 2008 Physics 37 652
[12] Wang Q Y, Wang Z Y, Fu Z J and Lin Q 2016 Chin. Phys. B 25 123701
[13] Lee C J 2000 Phys. Rev. A 61 063604
[14] Xue H, Feng Y, Chen S, Wang X, Yan X, Jiang Z and Zhou Z 2015 J. Appl. Phys. 117 094901
[15] Paris-Mandoki A, Jones M D, Nute J, Wu J, Warriar S and Hackermller L 2014 Rev. Sci. Instrum. 85 113103
[16] Yang W, Sun D L, Zhou L, Wang J and Zhan M S 2014 Acta Phys. Sin. 63 153701(in Chinese)
[17] Ertmer W, Blatt R, Hall J L and Zhu M 1985 Phys. Rev. Lett. 54 996
[18] Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 022001
[19] Ketterle W, Martin A, Joffe M A and Pritchard D E 1992 Phys. Rev. Lett. 69 2483
[20] Zhu M, Oates C W and Hall J L 1991 Phys. Rev. Lett. 67 46
[21] Riis E, Weiss D S, Moler K A and Chu S 1990 Phys. Rev. Lett. 64 1658
[22] Swanson T B, Silva N J, Mayer S K, Maki J J and McIntyre D H 1996 J. Opt. Soc. Am. B 13 1833
[23] Weyers S, Aucouturier E, Valentin C and Dimarcq N 1997 Opt. Commun. 143 30
[24] Schoser J, Batr A, Lw R, Schweikhard V, Grabowski A, Ovchinnikov Y B and Pfau T 2002 Phys. Rev. A 66 023410
[25] Wang X L, Cheng B, Wu B, Wang Z Y and Lin Q 2011 Chin. Phys. Lett. 28 053701
[26] Dieckmann K, Spreeuw R J C, Weidemller M and Walraven J T M 1998 Phys. Rev. A 58 3891
[27] Conroy R S, Xiao Y, Vengalattore M, Rooijakkers W and Prentiss M 2003 Opt. Commun. 226 259
[28] Ovchinnikov Y B 2005 Opt. Commun. 249 473
[29] Catani J, Maioli P, De Sarlo L, Minardi F and Inguscio M 2006 Phys. Rev. A 73 033415
[30] Ramirez-Serrano J, Yu N, Kohel J M, Kellogg J R and Maleki L 2006 Opt. Lett. 31 682
[31] Kellogg J R, Schlippert D, Kohel J M, Thompson R J, Aveline D C and Yu N 2012 Appl. Phys. B 109 61
[32] Rathod K D, Singh A K and Natarajan V 2013 EPL 102 43001
[33] Chanu S R, Rathod K D and Natarajan V 2016 Phys. Lett. A 380 2943
[34] Chaudhuri S, Roy S and Unnikrishnan C S 2006 Phys. Rev. A 74 023406
[35] Fang J, Qi L, Zhang Y, Wang T, Li H, Hu Z and Quan W 2015 J. Opt. Soc. Am. B 32 B61
[36] Park S J, Noh J and Mun J 2012 Opt. Commun. 285 3950
[37] Pruvost L, Marescaux D, Houde O and Duong H T 1999 Opt. Commun. 166 199
[38] Carrat V, Cabrera-Gutirrez C, Jacquey M, Tabosa J W, de Lesegno B V and Pruvost L 2014 Opt. Lett. 39 719
[39] Huang J Q, Yan X S, Wu C F, Zhang J W and Wang L J 2016 Chin. Phys. B 25 063701
[40] Lu Z T, Corwin K L, Renn M J, Anderson M H, Cornell E A and Wieman C E 1996 Phys. Rev. Lett. 77 3331
[41] Arlt J, Marag O, Webster S, Hopkins S and Foot C 1998 Opt. Commun. 157 303
[42] Camposeo A, Piombini A, Cervelli F, Tantussi F and Fuso F 2001 Opt. Commun. 200 231
[43] Kohel J M, Ramirez-Serrano J, Thompson R J, Maleki L, Bliss J L and Libbrecht K G 2003 J. Opt. Soc. Am. B 20 1161
[44] Yang T, Pandey K, Pramod M S, Leroux F, Kwong C C, Hajiyev E, Chia Z Y, Fang B and Wilkowski D 2015 Eur. Phys. J. D 69 226
[45] Swansson J, Dall R and Truscott A 2006 Appl. Phys. B 86 485
[46] Liu J P, Hou S Y, Wei B and Yin J P 2015 Acta Phys. Sin. 64 173701(in Chinese)
[47] Wang H and Buell W F 2003 J. Opt. Soc. Am. B 20 2025
[48] Taillandier-Loize T, Aljunid S A, Correia F, Fabre N, Perales F, Tualle J M, Baudon J, Ducloy M and Dutier G 2016 J. Phys. D 49 135503
[49] Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and Chu S 1991 Phys. Rev. Lett. 66 2297
[50] Feng Y Y, Xue H B, Wang X J, Chen S and Zhou Z Y 2014 Appl. Phys. B 118 139
[51] Xue H B, Feng Y Y, Wang X J, Chen S and Zhou Z Y 2013 Rev. Sci. Instrum. 84 046104
[52] Moler K, Weiss D S, Kasevich M and Chu S 1992 Phys. Rev. A 45 342
[53] Gustavson T L 2000 Precision Rotation Sensing Using Atom Interferometry (Ph. D. Thesis)(Stanford:Stanford University)
[1] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[2] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[3] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[6] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[7] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[8] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[9] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[10] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[11] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[12] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[13] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[14] Ab initio study on the electronic states and laser cooling of AlCl and AlBr
Rong Yang(杨荣), Bin Tang(唐斌), Tao Gao(高涛). Chin. Phys. B, 2016, 25(4): 043101.
[15] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
No Suggested Reading articles found!