Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 113201    DOI: 10.1088/1674-1056/26/11/113201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Rubidium-beam microwave clock pumped by distributed feedback diode lasers

Chang Liu(刘畅)1, Sheng Zhou(周晟)2, Yan-Hui Wang(王延辉)2, Shi-Min Hou(侯士敏)1
1. Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  

A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The physical package realizes the microwave interrogation of a rubidium-atomic beam. The optical systems, equipped with two 780-nm distributed feedback laser diodes, yield light for pumping and detecting. The servo loops control the frequency of a local oscillator with respect to the microwave spectrum. With the experimental systems, the microwave spectrum, which has an amplitude of 4 nA and a line width of 700 Hz, is obtained. Preliminary tests show that the clock short-term frequency stability is 7×10-11 at 1 s, and 3×10-12 at 1000 s. These experimental results demonstrate the feasibility of the scheme for a manufactured clock.

Keywords:  quantum frequency standard      atomic clock      atomic beam      distributed feedback  
Received:  18 June 2017      Revised:  15 August 2017      Accepted manuscript online: 
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  32.30.-r (Atomic spectra?)  
  42.62.Fi (Laser spectroscopy)  
  06.30.Ft (Time and frequency)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11174015).

Corresponding Authors:  Yan-Hui Wang, Shi-Min Hou     E-mail:  wangyanhui@pku.edu.cn;smhou@pku.edu.cn

Cite this article: 

Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏) Rubidium-beam microwave clock pumped by distributed feedback diode lasers 2017 Chin. Phys. B 26 113201

[1] Cutler L S 2005 Metrologia 42 S90
[2] Lecomte S, Haldimann M, Ruffieux R and Berthoud P 2007 IEEE International Frequency Control Symposium Joint with the, European Frequency and Time Forum, May 29-June 1, 2007, Geneva, Switzerland pp. 1127-1131
[3] Cao Y H, Zhao X W, Yang L, Chen H and Zhang S G 2014 IEEE International Frequency Control Symposium, May 19-22, 2014, Taipei, Taiwan, pp. 1-4
[4] Wang Q, Duan J, Qi X H, Zhang Y and Chen X Z 2015 Chin. Phys. Lett. 32 054206
[5] Wang B, Lv D S, Qu Q Z, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063701
[6] Ren W, Gao Y C, Li T, Lv D S and Liu L 2016 Chin. Phys. B 25 060601
[7] Arditi M and Cerez P 1972 IEEE Transactions on Instrumentation & Measurement 21 391
[8] Cerez P and Hartmann F 1977 IEEE Journal of Quantum Electronics 13 344
[9] Besedina A, Gevorkyan A, Mileti G and Zholnerov V 200620rm th European Frequency and Time Forum, March 27-30, 2006, Braunschweig, Germany, pp. 270-276
[10] Urabe S, Nakagiri K, Ohta Y and Kobayashi M 1980 IEEE Transactions on Instrumentation & Measurement 29 304
[11] De Marchi A 1987 IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control 34 598
[12] Besedina A, Gevorkyan A and Zholnerov V 2007 IEEE International Frequency Control Symposium Joint with the, European Frequency and Time Forum, May 29-June 1, 2007, Geneva, Switzerland, pp. 623-628
[13] Guo J and Wang Y H 2013 Chin Phys. Lett. 30 023201
[14] Dimarcq N, Giordano V, Theobald G and Cerez P 1991 J. Appl. Phys. 69 1158
[15] Ramsey N F 1950 Phys. Rev. 78 695
[16] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards(Bristol:A. Hilger)
[17] Liu C and Wang Y H 2015 Chin. Phys. B 24 010602
[18] Audoin C, Candelier V and Diamarcq N 1991 IEEE Transactions on Instrumentation & Measurement 40 121
[19] Jun J W and Lee H S 1998 Phys. Rev. A 58 4095
[1] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[2] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[3] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[4] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[5] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[6] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[7] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[8] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[9] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[10] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
[11] 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography
Cheng-Ao Yang(杨成奥), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Jun-Liang Xing(邢军亮), Si-Hang Wei(魏思航), Li-Chun Zhang(张立春), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2016, 25(2): 024204.
[12] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[13] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[14] A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air
Gong Ping (龚萍), Xie Liang (谢亮), Qi Xiao-Qiong (漆晓琼), Wang Rui (王瑞), Wang Hui (王辉), Chang Ming-Chao (常明超), Yang Hui-Xia (杨慧霞), Sun Fei (孙菲), Li Guan-Peng (李冠鹏). Chin. Phys. B, 2015, 24(1): 014206.
[15] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
No Suggested Reading articles found!