Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074302    DOI: 10.1088/1674-1056/23/7/074302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Integrated physics package of a chip-scale atomic clock

Li Shao-Liang (李绍良)a b, Xu Jing (徐静)b, Zhang Zhi-Qiang (张志强)a b, Zhao Lu-Bing (赵璐冰)a b, Long Liang (龙亮)a b, Wu Ya-Ming (吴亚明)a
a State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, λ/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7× 10-10τ-1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC.
Keywords:  chip-scale atomic clock (CSAC)      physics package      87Rb vapor cell      coherent population trapping (CPT)  
Received:  29 August 2013      Revised:  23 December 2013      Accepted manuscript online: 
PACS:  43.58.Hp (Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KGCX2-YW-143).
Corresponding Authors:  Wu Ya-Ming     E-mail:  yamingwu@mail.sim.ac.cn
About author:  43.58.Hp; 32.80.Qk; 32.30.Bv; 85.30.De

Cite this article: 

Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明) Integrated physics package of a chip-scale atomic clock 2014 Chin. Phys. B 23 074302

[1] Lutwak R, Emmons D, Riley W and Garvey R M 2002 34th Annual Precise Time and Time Interval (PTTI) Meeting, Reston, Virginia, p. 539
[2] Liew L, Knappe S, Moreland J, Robinson H, Hollberg L and Kitching J 2004 Appl. Phys. Lett. 84 2694
[3] Knappe S, Shah V, Schwindt P D D, Hollberg L and Kitching J 2004 Appl. Phys. Lett. 85 1460
[4] Gerginov V, Knappe S, Schwindt P D D, Shah V, Liew L, Moreland J, Robinson H G, Hollberg L, Kitching J, Brannon A, Breitbarth J and Popovic Z 2005 2005 IEEE International Frequency Control Symposium and Exhibition, Vancouver, Canada, p. 758
[5] Knappe S, Schwindt P D D, Shah V, Hollberg L, Kitching J, Liew L and Moreland J 2005 Opt. Express 13 1249
[6] Lutwak R, Deng J, Riley W, Varghese M, Leblanc J, Tepolt G, Mescher M, Serkland D K, Geib K M and Peake G M 2004 36th Annual Precise Time and Time Interval (PTTI) Meeting, Washington DC, USA, p. 339
[7] Mescher M, Lutwak R and Varghese M 2005 The Draper Technology Digest 10 26
[8] Lutwak R, Vlitas P, Varghese M, Mescher M, Serkland D K and Peake G M 2005 IEEE International Frequency Control Symposium and Exhibition, Vancouver, Canada, p. 752
[9] Knapkiewicz P, Dziuban J, Walczak R, Mauri L, Dziuban P and Gorecki C 2010 Procedia Engineering of Eurosensors Conference, Linz, Austria, p. 721
[10] Vecchio F, Venkatraman V, Shea H, Maeder T and Ryser P 2010 Procedia Engineering of Eurosensors Conference, Linz, Austria, p. 367
[11] Straessle R, Pellaton M, Affolderbach C, Petremandet Y, Briand D and Mileti G 2013 J. Appl. Phys. 113 064501
[12] Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
[13] Liu Z, Wang J Y, Diao W T, He J and Wang J M 2013 Chin. Phys. B 22 043201
[14] Xu Z X, Qu W Z, Gao R, Hu X H and Xiao Y H 2013 Chin. Phys. B 22 033202
[1] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[2] Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas
Qu Su-Ping (屈苏平), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2013, 22(9): 099501.
[3] Characterizing passive coherent population trapping resonance in cesium vapor cell filled with neon as buffer gas
Liu Zhi (刘智), Wang Jie-Ying (王杰英), Diao Wen-Ting (刁文婷), He Jun (何军), Wang Jun-Min (王军民). Chin. Phys. B, 2013, 22(4): 043201.
No Suggested Reading articles found!