CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ |
Yuan Liang(梁源)1,2, Yong-Guang Cheng(程永光)2, Xiang-Hong Ge(葛向红)2, Bao-He Yuan(袁保合)2, Juan Guo(郭娟)2, Qian Sun(孙强)2, Er-Jun Liang(梁二军)2 |
1. Department of Applied Physics, Donghua University, Shanghai 201620, China;
2. School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract A solid solution of (HfSc)0.83W2.25P0.83O12-δ is synthesized by the high-temperature, solid-state reaction and fast-quenching method. It is shown that it possesses an orthorhombic structure with space group Pmmm (47) and exhibits negative thermal expansion (NTE) property with low anisotropy in thermal expansion. The coefficients of thermal expansion (CTEs) for a, b, and c axes are -1.41×10-6 K-1, -2.23×10-6 K-1, and -1.87×10-6 K-1, respectively. This gives rise to volume and linear CTEs of -3.10×10-6 K-1 and -1.03×10-6 K-1, respectively. Besides, it exhibits also intense photoluminescence from 360 nm to about 600 nm. The mechanism of NTE and the correlation of the PL with axial thermal expansion property are discussed.
|
Received: 18 May 2017
Revised: 29 June 2017
Accepted manuscript online:
|
PACS:
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
61.50.-f
|
(Structure of bulk crystals)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574276, 51302249, and 11405028) and the Fundamental Research Fund for the Central Universities, China. |
Corresponding Authors:
Yuan Liang
E-mail: yliang@dhu.edu.cn
|
Cite this article:
Yuan Liang(梁源), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Bao-He Yuan(袁保合), Juan Guo(郭娟), Qian Sun(孙强), Er-Jun Liang(梁二军) Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ 2017 Chin. Phys. B 26 106501
|
[1] |
Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
|
[2] |
Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501
|
[3] |
Chen J, Hu L, Deng J X and Xing X R 2015 Chem. Soc. Rev. 44 3522
|
[4] |
Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L and Tucker M G 2008 Science 319 794
|
[5] |
Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J and Kowach G R 2014 Phys. Rev. Lett. 112 045505
|
[6] |
Li C W, Tang X L, Mu? oz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
|
[7] |
Marinkovic B A, Ari M, Avillez R R, Rizzo F, Ferreira F F, Miller K J, Johnson M B and White M A 2009 Chem. Mater. 21 2886
|
[8] |
Liu X, Cheng Y, Liang E and Chao M 2014 Phys. Chem. Chem. Phys. 16 12848
|
[9] |
Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.:Condens. Matter 20 275224
|
[10] |
Li W, Huang R J, Wang W, Liu H M, Han Y M, Huang C J and Li L F 2015 J. Alloys Compd. 628 308
|
[11] |
Chu L H, Wang C, Yan J, Na Y Y, Ding L, Sun Y and Wen Y C 2012 Scr. Mater. 67 173
|
[12] |
Tan J, Huang R J, Li W, Han Y M and Li L F 2014 J. Alloys Compd. 593 103
|
[13] |
Tong P, Louca D, King G, Llobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
|
[14] |
Yamada I, Marukawa S, Murakami M and Mori S 2014 Appl. Phys. Lett. 105 231906
|
[15] |
Azuma M, Chen W, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y and Attfield J P 2011 Nat. Commun. 2 347
|
[16] |
Chen J, Wang F F, Huang Q Z, Hu L, Song X P, Deng J X, Yu R B and Xing X R 2013 Sci. Rep. 3 2458
|
[17] |
Liang E J, Liang Y, Zhao Y, Liu J and Jiang Y 2008 J. Phys. Chem. A 112 12582
|
[18] |
Evans J S O, Hanson J C and Sleight A W 1998 Acta Cryst. B 54 705
|
[19] |
Yuan B H, Liu X S, Mao Y C, Wang J Q, Guo J, Cheng Y G, Song W B, Liang E J and Chao M J 2016 Mater. Chem. Phys. 170 162
|
[20] |
Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501
|
[21] |
Liang Y, Xing H Z, Chao M J and Liang E J 2014 Acta Phys. Sin. 63 248106(in Chinese)
|
[22] |
Woodcock D A, Lightfoot P and Ritter C 2000 J. Solid State Chem. 149 92
|
[23] |
Sumithra S and Umarji A M 2006 Solid State Sci. 8 1453
|
[24] |
Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
|
[25] |
Hu L, Chen J, Sanson A, Wu H, Rodriguez C G, Olivi L, Ren Y, Fan L L, Deng J X and Xing X R 2016 J. Am. Chem. Soc. 138 8320
|
[26] |
Miller K J, Romao C P, Bieringer M, Marinkovic B A, Prisco L and White M A 2013 J. Am. Ceram. Soc. 96 561
|
[27] |
Cheng Y G, Mao Y C, Liu X S, Yuan B H, Chao M J and Liang E J 2016 Chin. Phys. B 25 086501
|
[28] |
Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
|
[29] |
Gindhart A M, Lind C and Green M 2008 J. Mater. Res. 23 210
|
[30] |
Baiz T I, Gindhart A M, Kraemer S K and Lind C 2008 J. Sol-Gel. Sci. Technol. 47 128
|
[31] |
Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J and Liang E J 2014 J. Solid State Chem. 218 15
|
[32] |
Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F and Ferreira F F 2008 Phys. Stat. Sol. 245 2514
|
[33] |
Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
|
[34] |
Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
|
[35] |
Ge X H, Mao Y C, Liu X S, Cheng Y G, Yuan B H, Chao M J and Liang E J 2016 Sci. Rep. 6 24832
|
[36] |
Cheng Y G, Liang Y, Ge X H, Liu X S, Yuan B H, Guo J, Chao M J and Liang E J 2016 RSC Adv. 6 53657
|
[37] |
Cheng Y G, Liang Y, Mao Y C, Ge X H, Yuan B H, Guo J, Chao M J and Liang E J 2017 Mater. Res. Bull. 85 176
|
[38] |
Ge X H, Liu X S, Cheng Y G, Yuan B H, Chen D X, Chao M J, Guo J, Wang J Q and Liang E J 2016 J. Appl. Phys. 120 205101
|
[39] |
Omote A, Yotsuhashi S, Zenitani Y and Yamada Y 2011 J. Am. Ceram. Soc. 94 2285
|
[40] |
Dubois F, Goutenoire F, Laligant Y, Suard E and Lacorre P 2001 J. Solid State Chem. 159 228
|
[41] |
Prisco L P, Ponton P I, Guaman M V, Avillez R R, Romao C P, Johnson M B, White M A and Marinkovic B A 2016 J. Am. Ceram. Soc. 99 1742
|
[42] |
Li T, Ge X H, Liu X S, Cheng Y G, Liu Y M, Yuan H L, Li S L, Liu Y Y, Guo J, Li Y X and Liang E J 2016 Mater. Express 6 515
|
[43] |
Hopfield J J, Thomas D G and Gershenzon M 1963 Phys. Rev. Lett. 10 62
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|