ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Reflective ghost imaging free from vibrating detectors |
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉) |
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract The vibration is one of the important factors affecting imaging quality of conventional remote sensing imaging because the relative motion between the imaging system and the target can result in the degradation of imaging quality. The influence of the vibration of the detector in the test path on reflective ghost imaging (RGI) is investigated theoretically and experimentally. We analyze the effects of the vibrating amplitude and velocity. The results demonstrate that the microvibrations of the bucket detector have almost no impact on the imaging resolution and signal-to-noise ratio (SNR) of RGI, i.e., the degradation of imaging quality caused by the vibration of the detector can be overcome to some extent. Our results can be helpful for remote sensing imaging.
|
Received: 05 April 2017
Revised: 24 May 2017
Accepted manuscript online:
|
PACS:
|
42.30.-d
|
(Imaging and optical processing)
|
|
42.50.Ar
|
|
|
42.30.Wb
|
(Image reconstruction; tomography)
|
|
42.30.Va
|
(Image forming and processing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372102 and 61571183). |
Corresponding Authors:
Yan-feng Bai
E-mail: yfbai@hnu.edu.cn
|
Cite this article:
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉) Reflective ghost imaging free from vibrating detectors 2017 Chin. Phys. B 26 104204
|
[1] |
Rav-Acha A and Peleg S 2005 Pattern. Recogn. Lett. 26 311
|
[2] |
Lokhande R, Arya K and Gupta P 2006 Proceedings of the 2006 ACM symposium on Applied computing, April 23-27, 2006, Dijon, France, p. 301
|
[3] |
Shan Q, Jia J and Agarwala A 2008 ACM SIGGRAPH 2008 papers, August 11-15, 2008, Los Angeles, California, p. 73
|
[4] |
Klyshko D 1988 Sov. Phys. Usp. 31 74
|
[5] |
Pittman T, Shih Y, Strekalov D and Sergienko A 1995 Phys. Rev. A 52 R3429
|
[6] |
Abouraddy A F, Saleh B E, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
|
[7] |
Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
|
[8] |
Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
|
[9] |
Wang K G and Cao D Z 2004 Phys. Rev. A 70 041801
|
[10] |
Cao D Z, Xu B L, Zhang S H and Wang K G 2005 Opt. Lett. 30 2354
|
[11] |
Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
|
[12] |
Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A 71 013801
|
[13] |
Scarcelli G, Berardi V and Shih Y H 2006 Appl. Phys. Lett. 88 061106
|
[14] |
Cheng J 2009 Opt. Express 17 7916
|
[15] |
Gong W L and Han S S 2011 Opt. Express 36 394
|
[16] |
Turiaci G J, Varga J J M and Iemmi C 2013 Optik-International Journal for Light and Electron Optics 124 6212
|
[17] |
Meyers R E, Deacon K S and Shih Y H 2007 J. Mod. Opt. 54 2381
|
[18] |
Shapiro J H 2016 Opt. Express 24 14172
|
[19] |
Phillips D B, He R, Chen Q, Gibson G M and Padgett M J 2016 Opt. Express 24 14172
|
[20] |
Erkmen B I 2012 J. Opt. Soc. Am. A 29 782
|
[21] |
Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett. 101 141123
|
[22] |
Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D and Han S S 2016 Sci. Rep. 6 26133
|
[23] |
Yang X, Zhang Y, Xu L, Yang C H, Wang Q, Liu Y H and Zhao Y 2015 Chin. Phys. B 24 124202
|
[24] |
Duan D Y, Zhang L, Du S J and Xia Y J 2015 Chin. Phys. B 24 104203
|
[25] |
Li H, Xiong J and Zeng G H 2011 Opt. Eng. 50 127005
|
[26] |
Li E R, Bo Z W, Chen M L, Gong W L and Han S S 2014 Appl. Phys. Lett. 104 251120
|
[27] |
Zhang C, Gong W L and Han S S 2013 Appl. Phys. Lett. 102 021111
|
[28] |
Li X H, Deng C J, Chen M L, Gong W L and Han S S 2015 Photon. Res. 3 153
|
[29] |
Gao Y, Bai Y F and Fu X Q 2016 Opt. Express 24 25856
|
[30] |
Zeng X, Bai Y F, Shi X H, Gao Y and Fu X Q 2017 Opt. Commun. 382 415
|
[31] |
Basano L and Ottonello P 2010 Opt. Commun. 283 2657
|
[32] |
Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
|
[33] |
Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
|
[34] |
Gong W L 2016 J. Optics-UK 18 085702
|
[35] |
Nan S Q, Bai Y F, Shi X H, Shen Q, Li H X, Qu L J and Fu X Q 2016 IEEE P. J. 9 7500107
|
[36] |
Song S C, Sun M J and Wu L A 2016 Opt. Commun. 366 8
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|