Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100501    DOI: 10.1088/1674-1056/26/10/100501
GENERAL Prev   Next  

Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths

Shao-Ying Yin(尹少英)1,2, Qing-Xin Liu(刘庆欣)3, Jie Song(宋杰)1, Xue-Xin Xu(许学新)1, Ke-Ya Zhou(周可雅)1, Shu-Tian Liu(刘树田)1
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
2. Department of Physics, Harbin University, Harbin 150086, China;
3. China Mobile Group, Heilongjiang CO. Ltd., Harbin 150001, China
Abstract  We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.
Keywords:  quantum phase transition      quantum correlation      tripartite system      XY spin chain  
Received:  20 March 2017      Revised:  09 June 2017      Accepted manuscript online: 
PACS:  05.30.Rt (Quantum phase transitions)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by National Basic Research Program of China (Grant No. 2013CBA01702) and National Natural Science Foundation of China (Grant Nos. 61377016, 61575055, 10974039, 61307072, 61308017, and 61405056).
Corresponding Authors:  Shu-Tian Liu     E-mail:  stliu@hit.edu.cn

Cite this article: 

Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田) Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths 2017 Chin. Phys. B 26 100501

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) pp. 571-582
[2] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[5] Cao D Y, Liu B H, Wang Z, Huang Y F, Li C F and Guo G C 2015 Sci. Bull. 60 1128
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Dakić B, Lipp Y O, Ma X S, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walther P 2012 Nat. Phys. 8 666
[8] Sarandy M S 2009 Phys. Rev. A 80 022108
[9] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[10] Cucchietti F M, Fernandez-Vidal S and Paz J P 2007 Phys. Rev. A 75 032337
[11] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
[12] Guo J L, Mi Y J and Song H S 2012 Eur. Phys. J. D 66 24
[13] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[14] Luo S 2008 Phys. Rev. A 77 042303
[15] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[16] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[17] Xiao Y L, Li T, Fei S M, Jing N H, Wang Z X and Li-Jost X Q 2016 Chin. Phys. B 25 030301
[18] Cheng W W and Liu J M 2010 Phys. Rev. A 81 044304
[19] Cheng W W and Liu J M 2009 Phys. Rev. A 79 052320
[20] Soltani M R, Mahdavifar S and Mahmoudi M 2016 Chin. Phys. B 25 087501
[21] Gao M, Lei F C, Du C G and Long G L 2016 Sci. China-Phys. Mech. Astron. 59 610301
[22] Weinstein Y S 2010 Phys. Rev. A 82 032326
[23] Liu B Q, Shao B and Zou J 2010 Phys. Rev. A 82 062119
[24] Yan Y Y, Qin L G and Tian L J 2012 Chin. Phys. B 21 100304
[25] Yang Y and Wang A M 2014 Chin. Phys. B 23 020307
[26] Li Y C and Lin H Q 2016 Sci. Rep. 6 26365
[27] Ma X S, Wang A M and Cao Y 2007 Phys. Rev. B 76 155327
[28] Ma X S, Cong H S, Zhang J Y and Wang A M 2008 Eur. Phys. J. D 48 285
[29] Guo J L and Long G L 2013 Eur. Phys. J. D 67 53
[30] Cheng W W, Shan C J, Huang Y X, Liu T K and Li H 2010 Physica E 42 1544
[31] Yao Y, Xiao X, Li G and Sun C P 2015 Phys. Rev. A 92 022112
[32] Siewert J and Eltschka C 2012 Phys. Rev. Lett. 108 230502
[33] Radhakrishnan C, Parthasarathy M, Jambulingam S and Byrnes T 2016 Phys. Rev. Lett. 116 150504
[34] Siomau M and Fritzsche S 2010 Eur. Phys. J. D 60 397
[35] Li M, Fei S M and Wang Z X 2009 J. Phys. A:Math. Tehor. 42 145303
[36] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[8] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[9] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[11] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[12] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[13] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
No Suggested Reading articles found!