Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017301    DOI: 10.1088/1674-1056/26/1/017301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic control of the terahertz rainbow trapping effect based on a silicon-filled graded grating

Shu-Lin Wang(王书林)1, Lan Ding(丁岚)1, Wen Xu(徐文)1,2
1. School of Physics and Astronomy, Yunnan University, Kunming 650091, China;
2. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We theoretically propose a scheme to realize the dynamic control of the properties of the terahertz (THz) rainbow trapping effect (RTE) based on a silicon-filled graded grating (SFGG) in a relatively broad band via optical pumping. Through the theoretical analysis and finite-element method simulations, it is conceptually demonstrated that the band of the RTE can be dynamically tuned in a range of ~0.06 THz. Furthermore, the SFGG can also be optically switched between a device for the RTE and a waveguide for releasing the trapped waves. The results obtained here may imply applications for the tunable THz plasmonic devices, such as on-chip optical buffers, broad band slow-light systems, and integrated optical filters.
Keywords:  metamaterials      subwavelength structures      slow light      terahertz  
Received:  11 August 2016      Revised:  23 September 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304272 and 11574319), the Applied Basic Research Foundation of Yunnan Province, China (Grant No. 2013FD003), and the Young Backbone Teachers Training Program of Yunnan University, Ministry of Science and Technology of China (Grant No. 2011YQ130018).
Corresponding Authors:  Lan Ding, Wen Xu     E-mail:  dinglan@ynu.edu.cn;wenxuissp@aliyun.com

Cite this article: 

Shu-Lin Wang(王书林), Lan Ding(丁岚), Wen Xu(徐文) Dynamic control of the terahertz rainbow trapping effect based on a silicon-filled graded grating 2017 Chin. Phys. B 26 017301

[1] Kosmas L T, Boardman A D and Hess O 2007 Nature 450 397
[2] Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R and Schmidt H 2010 Nat. Photon. 4 776
[3] Hau L V 2008 Nat. Photon. 2 451
[4] Gan Q, Fu Z, Ding Y J and Bartoli F J 2008 Phys. Rev. Lett. 100 256803
[5] Fu Z, Gan Q, Ding Y J and Bartoli F J 2008 IEEE JSTQE 14 486
[6] Gan Q and Bartoli F J 2011 IEEE JSTQE 17 102
[7] Gan Q, Ding Y J and Bartoli F J 2009 Phys. Rev. Lett. 102 056801
[8] Gan Q, Gao Y, Wagner K, Vezenov D, Ding Y J and Bartoli F J 2011 Proc. Natl. Acad. Sci. USA 108 5169
[9] Wang W, He J L, Li X J and Hong Z 2010 Opt. Express 18 11132
[10] Chen L, Wang G, Gan Q and Bartoli F J 2009 Phys. Rev. B 80 161106
[11] Yuan Y H, Liu J S, He J and Yao J Q 2014 Opt. Commun. 332 132
[12] Cooke D G and Jepsen P U 2008 Opt. Express 16 15123
[13] Ding L, Wang K J, Wang W, Zhu D F, Yin C Y and Liu J S 2013 Sci. Rep. 3 2493
[14] Ding L, Xu W, Zhao C X, Wang S L and Liu H F 2015 Opt. Lett. 40 4524
[15] Ng B, Wu J, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M and Maier S A 2013 Adv. Opt. Mater. 1 543
[16] Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L and García-Vidal F J 2008 Nat. Photon. 2 175
[17] Wang K J, Ding L, Liu J S, Zhang J, Yang X M, Chin J Y and Cui T J 2011 Opt. Express 19 11375
[18] Li X F, Peng W, Zhao Y L, Wang Q and Wei J L 2016 Chin. Phys. B 25 037303
[19] Chen L, Zhang T, Li X and Wang G P 2013 Opt. Express 21 28628
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
No Suggested Reading articles found!