Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 013203    DOI: 10.1088/1674-1056/26/1/013203
RAPID COMMUNICATION Prev   Next  

Electron localization of linear symmetric molecular ion H32+

Zheng-Mao Jia(贾正茂), Zhi-Nan Zeng(曾志男), Ru-Xin Li(李儒新)
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

Electron localization in the dissociation of the symmetric linear molecular ion H32+ is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ2Σu+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ2Σu+ state. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current (DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.

Keywords:  dissociation localization      time-dependent Schrö      dinger equation      Coulomb potential      ultraviolet laser pulse  
Received:  11 September 2016      Revised:  24 October 2016      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 61521093, 11134010, 11227902, 11222439, and 11274325) and the National Basic Research Program of China (Grant No. 2011CB808103).

Corresponding Authors:  Zhi-Nan Zeng     E-mail:  zhinan_zeng@mail.siom.ac.cn

Cite this article: 

Zheng-Mao Jia(贾正茂), Zhi-Nan Zeng(曾志男), Ru-Xin Li(李儒新) Electron localization of linear symmetric molecular ion H32+ 2017 Chin. Phys. B 26 013203

[1] Gaire B, McKenna J, Zohrabi M, Carnes K D, Esry B D and Ben Itzhak I 2000 Phys. Rev. A 85 023419
[2] Roudnev V and Esry B D 2007 Phys. Rev. A 76 023403
[3] Roudnev V, Esry B D and Ben Itzhak I 2004 Phys. Rev. Lett. 93 163601
[4] McKenna J, Anis F, Sayler A M, Gaire B, Johnson Nora G, Parke E, Carnes K D, Esry B D and Ben Itzhak I 2010 Phys. Rev. A 85 023405
[5] Fischer B, Kremer M, Pfeifer T, Feuerstein B, Sharma V, Thumm U, Schröter C D, Moshammer R and Ullrich J 2010 Phys. Rev. Lett. 105 223001
[6] He F 2012 Phys. Rev. A 86 063415
[7] Kling M F, Siedschlag Ch, Znakovskaya I, Verhoef A J, Zherebtsov S, Krausz F, Lezius M and Vrakking M J J 2008 Mole. Phys. 106 455
[8] Kling M F, Siedschlag Ch, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F and Vrakking M J J 2006 Science 312 246
[9] Sansone G, Kelkensberg F, Pérez Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson, Swoboda P M, Benedetti E, Ferrari, Lépine F F, Sanz Vicario J L, Zherebtsov S, Znakovskaya I, L'Huillier A, Ivanov M Yu, Nisoli M, Martín F and Vrakking M J J 2010 Nature 465 763
[10] Dietrich P, Ivanov M Yu, Ilkov F A and Corkum P B 1996 Phys. Rev. Lett. 77 4150
[11] Niikura H, Corkum P B and Villeneuve D M 2003 Phys. Rev. Lett. 90 203601
[12] Niikura H, Villeneuve D M and Corkum P B 2004 Phys. Rev. Lett. 92 133002
[13] Zuo T and Bandrauk A D 1995 Phys. Rev. A 51 R26
[14] Turbiner A V and López Vieyra J C 2006 Phys. Rep. 424 309
[15] Bandrauk A, Barmaki S and Kamta G L 2007 Phys. Rev. Lett. 98 013001
[16] Jia Z M, Zeng Z N, Li R X, Xu Z Z and Deng Y P 2014 Phys. Rev. A 89 023419
[17] Jia Z M, Zeng Z N, Li R X and Xu Z Z 2014 Chin. Phys. B 23 083201
[18] Jia Z M, Zeng Z N, Li R X, Xu Z Z and Deng Y P 2015 Chin. Phys. B 24 013204
[19] Bian X B, Peng L Y and Shi T Y 2008 Phys. Rev. A 78 053408
[20] Herzberg G 1953 Molecular Spectra and Molecular Structure I Spectra of Diamotic Molecules, 2th edn. (New York:D. VAN NOSTRAND) pp. 321-324
[21] Jia Z M, Zeng Z N, Li R X and Xu Z Z 2016 J. Phys. B 49 215604
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[8] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[9] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[10] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[11] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[12] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[13] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[14] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[15] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
No Suggested Reading articles found!