Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 010701    DOI: 10.1088/1674-1056/26/1/010701
GENERAL Prev   Next  

Ultralow detection limit of giant magnetoresistance biosensor using Fe3O4-graphene composite nanoparticle label

Jie Xu(徐洁)1,2, Ji-qing Jiao(焦吉庆)2, Qiang Li(李强)1, Shan-dong Li(李山东)1,3
1. College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China;
2. School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China;
3. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  A special Fe3O4 nanoparticles-graphene (Fe3O4-GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance (GMR) sensors with a Wheatstone bridge. The Fe3O4-GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4-GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |ΔV| between detecting and reference sensors undergoes the relationship of |ΔV|=240.5lgx+515.2 with an ultralow detection limit of 10 ng/mL (very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.
Keywords:  giant magnetoresistance biosensors      magnetic label      Fe3O4-graphene composite      lowest detection limit  
Received:  14 May 2016      Revised:  13 September 2016      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  87.63.-d (Non-ionizing radiation equipment and techniques)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074040, 11504192, 11674187, 11604172, and 51403114), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2012FZ006 and BS2014CL010), and the China Postdoctoral Science Foundation (Grant Nos. 2014M551868 and 2015M570570).
Corresponding Authors:  Shan-dong Li     E-mail:  lishd@qdu.edu.cn

Cite this article: 

Jie Xu(徐洁), Ji-qing Jiao(焦吉庆), Qiang Li(李强), Shan-dong Li(李山东) Ultralow detection limit of giant magnetoresistance biosensor using Fe3O4-graphene composite nanoparticle label 2017 Chin. Phys. B 26 010701

[1] Baselt D R, Lee G U, Natesan M, Metzger S W, Sheehan P E and Colton R J 1998 Biosens. Bioelectron. 13 731
[2] Enpuku K, Minotani T, Gima T, Kuroki Y, Itoh Y, Yamashita M, Katakura Y and Kuhara S 1999 J. Appl. Phys. 38 L1102
[3] Lee S, Myers W R, Grossman H L, Cho H M, Chemla Y R and Clarke J 2002 Appl. Phys. Lett. 81 3094
[4] Besse P A, Boero G, Demierre M, Pott V and Popovic R 2002 Appl. Phys. Lett. 80 4199
[5] Ejsing L, Hansen M F, Menon A K, Ferreira H A, Graham D L and Freitas P P 2004 Appl. Phys. Lett. 84 4729
[6] Miller M M, Prinz G A, Cheng S F and Bounnak S 2002 Appl. Phys. Lett. 81 2211
[7] Graham D L, Ferreira H A, Freitas P P and Cabral J M S 2003 Biosens. Bioelectron. 18 483
[8] Schotter J, Kamp P B, Becker A, Puhler A, Reiss G and Bruckl H 2004 Biosens. Bioelectron. 19 1149
[9] Wang S X and Li G 2008 IEEE Trans. Magn. 44 1687
[10] Li Y, Srinivasan B, Jing Y, Yao X, Hugger M A, Wang J P and Xing C 2010 J. Am. Chem. Soc. 132 4388
[11] Manteca A, Mujika M and Arana S 2011 Biosens. Bioelectron. 26 3705
[12] Li L, Mak K Y, Leung C W, Ng S M, Lei Z Q and Pong P W T 2013 IEEE Trans. Magn. 49 4056
[13] Wang W, Wang Y, Tu L, Feng Y, Klein T and Wang J P 2014 Sci. Rep. 4 5716
[14] Lee C P, Lai M F, Huang H T, Lin C W and Wei Z H 2014 Biosen. Bioelectron. 57 48
[15] Kokkinis G, Jamalieh M, Cardoso F, Cardoso S, Keplinger F and Giouroudi I 2015 J. Appl. Phys. 117 17B731
[16] Park J 2015 J. Magn. Magn. Mater. 389 56
[17] Martins V C, Germano J, Cardoso F A, Loureiro J, Cardoso S, Soura L, Piedade M, Fonseca L P and Freitas P P 2015 J. Magn. Magn. Mater. 322 1655
[18] Sun X, Ho D, Lacroix L M, Xiao J Q and Sun S 2012 IEEE Trans. Nanobiosci. 11 1536
[19] Cai P, Chen H and Xie J 2014 Chin. Phys. B 23 117504
[20] Sun S N, Wei C, Zhu Z Z, Hou Y L, Subbu S V and Xu Z C 2014 Chin. Phys. B 23 037503
[21] Yasir R M, Pan L, Javed Q, Zubair I M, Qiu H, Hassan F M, Guo Z and Tanceer M 2013 Chin. Phys. B 22 107101
[22] Sun S H and Zeng H 2002 J. Am. Chem. Soc. 124 8204
[23] Yao Y, Miao S, Liu S, Ma L P, Sun H and Wang S 2012 Chem. Eng. J. 184 326
[24] Xu J, Li Q, Gao X Y, Leng F F, Lü M M, Guo P Z, Zhao G X and Li S D 2016 IEEE Trans. Magn. 52 5200204
[25] Tural B, Özkan N and Volkan M 2009 J. Phys. Chem. Sol. 70 860
[26] Gee S H, Hong Y K, Erickson D W, Park M H and Sur J C 2003 J. Appl. Phys. 93 7560
[27] Shen X, Ho C M and Wong T S 2010 J. Phys. Chem. B 114 5269
[28] Li F and Kosel J 2014 Biosens. Bioelectron. 59 145
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[7] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[14] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[15] Effect of staggered array structure on the flow field of micro gas chromatographic column
Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(1): 010701.
No Suggested Reading articles found!