Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 010601    DOI: 10.1088/1674-1056/26/1/010601
GENERAL Prev   Next  

Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence

Hong-ying Yang(杨洪应)1, Qiang Zheng(郑强)2, Qi-jun Zhi(支启军)1
1. School of Physics and Electronics, Guizhou Normal University, Guiyang 550001, China;
2. School of Mathematics, Guizhou Normal University, Guiyang 550001, China
Abstract  Adopting the Milburn decoherence model, we investigate the performance of quantum Fisher information of the two-qutrit isotropic Heisenberg XY chain under decoherence. We find that the quantum Fisher information with respect to the decoherence rate and the magnetic field decreases exponentially in the long-time limit, which significantly reduces the precision of optimal quantum estimation. We also show that with the increase of the decoherence rate or the magnetic field, the QFIs go down considerably. Furthermore, we find that the precision of optimal quantum estimation can be enhanced by the entanglement in the input state.
Keywords:  intrinsic decoherence      quantum Fisher information      spin chain  
Received:  11 January 2016      Revised:  19 September 2016      Accepted manuscript online: 
PACS:  06.20.-f (Metrology)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11365006 and 11565010), Guizhou Province Science and Technology Innovation Talent Team, China (Grant No. (2015)4015), Innovation Team Foundation of the Education Department of Guizhou Province, China (Grant No.[2014]35), the Natural Science Foundation of Guizhou Province, China (Grant No. QKHLHZ[2015]7767), and High Level Creative Talents, China (Grant No. (2016)-4008).
Corresponding Authors:  Qiang Zheng, Qi-jun Zhi     E-mail:  qz@csrc.ac.cn;qjzhi@gznu.edu.cn

Cite this article: 

Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军) Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence 2017 Chin. Phys. B 26 010601

[1] Giovanetti V, Lloyd S and Maccone L 2004 Science 306 1330
[2] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[3] Zhang Y M, Li X W, Yang W and Jin G R 2013 Phys. Rev. A 88 043832
[4] Demkowicz D R, Kolodynski J and Guta M 2012 Nat.Commun. 3 1063
[5] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[6] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezze L, Smerzi A and Oberthaler M K 2014 Science 345 424
[7] Zheng Q, Yao Y and Li Y 2014 Eur. Phys. J. D 68 170
[8] Yue J D, Zhang Y R and Fan H 2014 Sci. Rep. 4 5933
[9] Chang F, Wang X Q, Gai Y J, Yan D and Song L J 2014 Acta Phys. Sin. 63 170302(in Chinese)
[10] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam:North-Holland)
[11] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York:Academic)
[12] Huelga S F, Macchiavello C, Pellizzari T, Ekert K A, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[13] Li N and Luo S L 2013 Phys. Rev. A 88 014301
[14] Wang T L, Wu L N, Yang W, Jin G R, Lambert N and Nori F 2014 New J. Phys. 16 063039
[15] Watanable Y, Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 020401
[16] Zheng Q, Ge L, YaoY and Zhi Q J 2015 Phys. Rev. A 91 033805
[17] Li Y L, Xiao X and Yao Y 2015 Phys. Rev. A 91 052105
[18] Huang J, Guo Y N and Xie Q 2016 Chin. Phys. B 25 020303
[19] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[20] Ma J, Huang Y X, Wang X G and Sun C P 2011 Phys. Rev. A 84 022302
[21] Xiong H N and Wang X G 2011 Physica A 390 4719
[22] Salvatori G, Mandarino A and Paris M G A 2014 Phys. Rev. A 90 022111
[23] Kok P, Braunstein S L and Dowling J P 2004 J. Opt. B 6 029
[24] Bollinger J J, Itano W, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[25] Fisher R A 1925 Proc. Cambridge Philos. Soc. 22 700
[26] Pairs M G A 2009 Int. J. Quant. Inf. 7 125
[27] Wei Z, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[28] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[29] Milburn G J 1991 Phys. Rev. A 44 5401
[30] Moya-Cessa H, Buzek V, Kim M S and Knight P L 1993 Phys. Rev. A 48 3900
[31] Liu B Q, Shao B and Zou J 2010 Phys. Lett. A 374 1970
[32] Vidal G and Wemer R F 2002 Phys. Rev. A 65 032314
[33] Zhou L, Yi X X, Song H S and Quo Y Q 2005 Chin. Phys. 14 1168
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[3] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[4] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[5] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[6] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[9] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
[10] Applicability of coupling strength estimation for linear chains of restricted access
He Feng(冯赫), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2020, 29(3): 030305.
[11] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[12] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[13] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[14] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[15] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
No Suggested Reading articles found!