Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 085201    DOI: 10.1088/1674-1056/25/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

Jia-Hui Zhang(张珈珲)1,2, Xin-Jun Zhang(张新军)1, Yan-Ping Zhao(赵燕平)1, Cheng-Ming Qin(秦成明)1, Zhao Chen(陈照)1,2, Lei Yang(杨磊)1,2, Jian-Hua Wang(王健华)1
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China
Abstract  A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper.
Keywords:  variational principle      ICRF antenna      impedance  
Received:  09 October 2015      Revised:  05 April 2016      Accepted manuscript online: 
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).
Corresponding Authors:  Xin-Jun Zhang     E-mail:  xjzhang@ipp.ac.cn

Cite this article: 

Jia-Hui Zhang(张珈珲), Xin-Jun Zhang(张新军), Yan-Ping Zhao(赵燕平), Cheng-Ming Qin(秦成明), Zhao Chen(陈照), Lei Yang(杨磊), Jian-Hua Wang(王健华) Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory 2016 Chin. Phys. B 25 085201

[1] Bhatnagar V P, Koch R, Messiaen A M and Weynants R R 1982 Nucl. Fusion 22 280
[2] Koch R, Bhatnagar V P, Messiaen A M and Vaneester D 1986 Comput. Phys. Commun. 40 1
[3] Mau T K, Chiu S C and Baker D R 1987 IEEE Trans. Plasma Sci. 15 273
[4] Pecoul S, Heuraux S, Koch R and Leclert G 2002 Comput. Phys. Commun. 146 166
[5] Theilhaber K and Jacquinot J 1984 Nucl. Fusion 24 541
[6] Theilhaber K 1984 Nucl. Fusion 24 1383
[7] Saigusa M, Yamamoto T, Petty C C, Yoshioka K, Kazumi H, Kawashima H, Fujii T, Kimura H, Miura Y and Tamai H 1993 Nucl. Fusion 33 421
[8] Zhang X J, Qin C M and Zhao Y P 2005 Chin. Phys. 14 2251
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[3] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[4] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[5] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[6] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[7] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[8] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[9] Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type
Juan-Juan Ding(丁娟娟), Yi Zhang(张毅). Chin. Phys. B, 2020, 29(4): 044501.
[10] Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model
Jia Xu(徐佳), Weizhen Xie(谢伟珍), Yiyong Chen(陈一勇), Lihong Wang(王立洪), and Qing Ma(马青). Chin. Phys. B, 2020, 29(12): 128703.
[11] Conductive property of Zr0.1Fe0.9V1.1Mo0.9O7 with low thermal expansion
Xiaoke He(何小可), Heng Qi(戚恒), Qi Xu(徐启), Xiansheng Liu(刘献省), Lei Xu(许磊), Baohe Yuan(袁保合). Chin. Phys. B, 2019, 28(5): 056501.
[12] The c-axis complex permittivity and electrical impedance in BaFe2As2:Experimental examination on transformation validity
Yongqiang Li(李永强), Xinzhe Du(杜新哲), Dongliang Gong(龚冬良), Qirui Yang(杨綦睿), Wenliang Zhang(张汶良), Tao Xie(谢涛), Bo Feng(冯波), Kai Chen(陈恺), Huiqian Luo(罗会仟), Junming Liu(刘俊明), Jinsong Zhu(朱劲松). Chin. Phys. B, 2019, 28(5): 057702.
[13] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[14] A new type of adiabatic invariants for disturbednon-conservative nonholonomic system
Xin-Xin Xu(徐鑫鑫), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(12): 120402.
[15] Conservation laws for Birkhoffian systems of Herglotz type
Yi Zhang(张毅), Xue Tian(田雪). Chin. Phys. B, 2018, 27(9): 090502.
No Suggested Reading articles found!