Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 085202    DOI: 10.1088/1674-1056/25/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A new ignition hohlraum design for indirect-drive inertial confinement fusion

Xin Li(李欣), Chang-Shu Wu(吴畅书), Zhen-Sheng Dai(戴振生), Wu-Di Zheng(郑无敌), Jian-Fa Gu(谷建法), Pei-Jun Gu(古培俊), Shi-Yang Zou(邹士阳), Jie Liu(刘杰), Shao-Ping Zhu(朱少平)
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  

In this paper, a six-cylinder-port hohlraum is proposed to provide high symmetry flux on capsule. It is designed to ignite a capsule with 1.2-mm radius in indirect-drive inertial confinement fusion (ICF). Flux symmetry and laser energy are calculated by using three-dimensional view factor method and laser energy balance in hohlraum. Plasma conditions are analyzed based on the two-dimensional radiation-hydrodynamic simulations. There is no Ylm (l≤4) asymmetry in the six-cylinder-port hohlraum when the influences of laser entrance holes (LEHs) and laser spots cancel each other out with suitable target parameters. A radiation drive with 300 eV and good flux symmetry can be achieved by using a laser energy of 2.3 MJ and peak power of 500 TW. According to the simulations, the electron temperature and the electron density on the wall of laser cone are high and low, respectively, which are similar to those of outer cones in the hohlraums on National Ignition Facility (NIF). And the laser intensity is also as low as those of NIF outer cones. So the backscattering due to laser plasma interaction (LPI) is considered to be negligible. The six-cyliner-port hohlraum could be superior to the traditional cylindrical hohlraum and the octahedral hohlraum in both higher symmetry and lower backscattering without supplementary technology at an acceptable laser energy level. It is undoubted that the hohlraum will add to the diversity of ICF approaches.

Keywords:  ICF      hohlraums      ignition      six-cylinder port  
Received:  16 May 2016      Revised:  02 June 2016      Accepted manuscript online: 
PACS:  52.57.-z (Laser inertial confinement)  
  52.57.Bc (Target design and fabrication)  
  52.38.Dx (Laser light absorption in plasmas (collisional, parametric, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11435011 and 11575034).

Corresponding Authors:  Zhen-Sheng Dai     E-mail:  dai_zhensheng@iapcm.ac.cn

Cite this article: 

Xin Li(李欣), Chang-Shu Wu(吴畅书), Zhen-Sheng Dai(戴振生), Wu-Di Zheng(郑无敌), Jian-Fa Gu(谷建法), Pei-Jun Gu(古培俊), Shi-Yang Zou(邹士阳), Jie Liu(刘杰), Shao-Ping Zhu(朱少平) A new ignition hohlraum design for indirect-drive inertial confinement fusion 2016 Chin. Phys. B 25 085202

[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 2 3933
[2] Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford:Oxford Science Press)
[3] Haan S W, Lindl J D, Callanhan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V, Hatchett S P, Herrmann M C, Hinkel D E, Ho D D, Huang H, Jones O S, Kline J, Kyrala G, Lanen O L, MacGowan B J, Marinak M M, Meyerhofer D D, Milovich J L, Moreno K A, Moses E I, Munro D H, Nikroo A, Olson R E, Peterson K, Pollaine S M, Ralph J E, Robey H F, Spears B K, Springer P T, Suter L J, Thomas C A, Town R P, Vesey R, Weber S V, Wilkens H L and Wilson D C 2011 Phys. Plasmas 18 051001
[4] Phillion D W and Pollaine S M 1994 Phys. Plasmas 1 2963
[5] Schnittman J D and Craxton R S 1996 Phys. Plasmas 3 3786
[6] Lan K, Liu J, Lai D X, Zheng W D and He X T 2014 Phys. Plasmas 21 010704
[7] Lan K, He X T, Liu J, Zheng W D and Lai D X 2014 Phys. Plasmas 21 052704
[8] Lan K and Zheng W D 2014 Phys. Plasmas 21 090704
[9] Kyrala G A, Kline J L, Dixit S, Glenzer S, Kalantar D, Bradley D, Lzumi N, Meezan N, Landen O, Callahan D, Weber S V, Holder J P, Glenn S, Edwards M J, Koch J, Suter L J, Haan S W, Town R P J, Michel P, Jones O, Langer S, Moody J D, Dewald E L, Ma T, Ralph J, Hamza A, Dzenitis E and Kilkenny J 2011 Phys. Plasmas 18 056307
[10] Michel P, Glenzer S H, Divol L, Bradley D K, Callahan D, Dixit S, Glenn S, Hinkel D, Kirkwood R K, Kline J L, Kruer W L, Kyrala G A, LePage S, Meezan N B, Town R, Widmann K, Williams E A, MacGowan B J, Lindl J and Suter L J 2010 Phys. Plasmas 17 056305
[11] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppnerl T, Hinkel D E, Berzak Hopkins L F, Klines J L, LePage S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T and Tommasini R 2014 Nature 506 343
[12] Duan H, Changshu Wu, Wenbing Pei and Shiyang Zou 2015 Phys. Plasmas 22 092704
[13] Cohen D H, Landen O L and MacFarlane J J 2005 Phys. Plasmas 12 122703
[14] Olson R E, Suter L J, Kline J L, Callahan D A and Rosen M D 2012 Phys. Plasmas 19 053301
[15] Lindl J, Landen O, Edwards J, Moses E and NIC Team 2014 Phys. Plasmas 21 020501
[16] Song P, Zhai C L, Li S G, Yong H, Qi J, Hang X D, Yang R, Cheng J, Zeng Q H, Hu X Y, Wang S, Shi Y, Zheng W D, Gu P J, Zou S Y, Li X, Zhao Y Q, Zhang H S, Zhang A Q, An H B, Li J H, Pei W B and Zhu S P 2015 High Power Laser and Particle Beams 27 032007
[17] Hinkel D E, Haan S W, Langdon A B, Dittrich T R, Still C H and Marnak M M 2003 Phys. Plasmas 11 1128
[18] Laffite S and Loiseau P 2010 Phys. Plasmas 17 102704
[1] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
[2] Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis. Chin. Phys. B, 2021, 30(11): 115201.
[3] Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter
Bang-Huang Cai(蔡帮煌), Hui-Min Song(宋慧敏), Min Jia(贾敏), Yun Wu(吴云), Wei Cui(崔巍), Sheng-Fang Huang(黄胜方). Chin. Phys. B, 2020, 29(6): 065207.
[4] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[5] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[6] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[7] Ignition characteristics of pre-combustion plasma jet igniter
Si-Bo Wang(王思博), Jin-Lu Yu(于锦禄), Jing-Feng Ye(叶景峰), Guo-Hua Li(李国华), Zhao Chen(陈朝), Lu-Yun Jiang(蒋陆昀), Chen-Li Gu(古晨力). Chin. Phys. B, 2019, 28(11): 114702.
[8] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
[9] Effect of plasma on combustion characteristics of boron
Peng Zhang(张鹏), Wenli Zhong(钟文丽), Qian Li(李倩), Bo Yang(杨波), Zhongguang Li(李忠光), Xiao Luan(栾骁). Chin. Phys. B, 2017, 26(11): 110501.
[10] Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process
Qingming Liu(刘庆明), Jinxiang Huang(黄金香), Huige Shao(邵惠阁), Yunming Zhang(张云明). Chin. Phys. B, 2017, 26(10): 105202.
[11] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[12] Fusion flame spreading in depth with deuterium–tritium plane fuel density profile for plasma block ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2012, 21(12): 125201.
[13] Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition
Zhang Hai-Long(张海龙), Liu Feng-Zhen(刘丰珍), Zhu Mei-Fang(朱美芳), and Liu Jin-Long(刘金龙) . Chin. Phys. B, 2012, 21(1): 015203.
No Suggested Reading articles found!