ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam |
Yu-Chen Zang(臧雨宸)1,2, Wei-Jun Lin(林伟军)1,2,†, Chang Su(苏畅)1,2, and Peng-Fei Wu(吴鹏飞)1,2 |
1 Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery, which requires the precise prediction of the acoustic radiation force under various circumstances to improve the system efficiency. The acoustic radiation force exerted by a zero-order quasi-Bessel-Gauss beam on an elastic spherical shell near an impedance boundary is theoretically and numerically studied in this study. By means of the finite series method and the image theory, a zero-order quasi-Bessel-Gauss beam is expanded in terms of spherical harmonic functions, and the exact solution of the acoustic radiation force is derived based on the acoustic scattering theory. The acoustic radiation force function, which represents the radiation force per unit energy density and per unit cross-sectional surface, is especially investigated. Some simulated results for a polymethyl methacrylate shell and an aluminum shell are provided to illustrate the behavior of acoustic radiation force in this case. The simulated results show the oscillatory property and the negative radiation force caused by the impedance boundary. An appropriate relative thickness of the shell can generate sharp peaks for a polymethyl methacrylate shell. Strong radiation force can be obtained at small half-cone angles and the beam waist only affects the results at high frequencies. Considering that the quasi-Bessel-Gauss beam possesses both the energy focusing property and the non-diffracting advantage, this study is expected to be useful in the development of acoustic tweezers, contrast agent micro-shells, and drug delivery applications.
|
Received: 16 September 2020
Revised: 03 November 2020
Accepted manuscript online: 13 November 2020
|
PACS:
|
43.25.Qp
|
(Radiation pressure?)
|
|
43.35.Wa
|
(Biological effects of ultrasound, ultrasonic tomography)
|
|
43.80.Gx
|
(Mechanisms of action of acoustic energy on biological systems: physical processes, sites of action)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81527901, 11604361, and 91630309). |
Corresponding Authors:
†Corresponding author. E-mail: linwj@mail.ioa.ac.cn
|
Cite this article:
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞) Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam 2021 Chin. Phys. B 30 044301
|
1 Wu J R 1991 J. Acoust. Soc. Am. 89 2140 2 Lee J W, Ha K L and Shung K K 2005 J. Acoust. Soc. Am. 117 3273 3 Lee J W, Teh S Y, Lee A, Kim H H, Lee C Y and Shung K K 2009 Appl. Phys. Lett. 95 073701 4 Ozcelik A, Rufo J and Guo F 2018 Nat. Methods 15 1021 5 Baudoin M and Thomas J L 2020 Ann. Rev. Fluid Mech. 52 205 6 Lierke E G1996 Acustica 82 220 7 Yarin A L, Pfaffenlehner M and Tropea C 1998 J. Fluid Mech. 356 65 8 Laurell T, Petersson F and Nilsson A 2007 Chem. Soc. Rev. 36 492 9 Manneberg O, Hagsater S M, Svennebring J, Hertz H M, Kutter J P, Bruus H and Wiklund M 2009 Ultrasonics 49 112 10 Rajabi M and Mojahed A 2016 J. Sound Vib. 383 265 11 King L V1934 Proc. Roya. Soc. London, Ser. 147 212 12 Yosioka K and Kawasima Y1955 Acta Acust. United Ac. 5 167 13 Hasegawa T and Yosioka K 1969 J. Acoust. Soc. Am. 46 1139 14 Hasegawa T 1979 J. Acoust. Soc. Am. 65 32 15 Wu J R and Du G H 1990 J. Acoust. Soc. Am. 87 997 16 Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301 17 Marston P L 2006 J. Acoust. Soc. Am. 120 3518 18 Marston P L, Wei W and Thiessen D B2006 AIP Conf. Proc. 838 495 19 Marston P L 2007 J. Acoust. Soc. Am. 122 3162 20 Marston P L 2009 J. Acoust. Soc. Am. 125 3539 21 Mitri F G 2008 Ann. Phys. 323 1604 22 Mitri F G 2009 Ultrasonics 49 794 23 Mitri F G 2009 IEEE Trans. UFFC. 56 1100 24 Mitri F G 2009 IEEE Trans. UFFC. 56 1059 25 Mitri F G 2008 Ann. Phys. 323 2840 26 Mitri F G 2009 J. Phys. A-Math. Theor. 42 245202 27 Mitri F G 2009 Euro. Phys. J. E 28 469 28 Mitri F G 2010 J. Sound Vib. 329 3319 29 Li W, Li J and Gong Z X 2015 Acta Phys. Sin. 64 154305 (in Chinese) 30 Mitri F G 2015 Wave Motion 57 231 31 Mitri F G 2015 Europhys. Lett. 112 34002 32 Mitri F G 2017 Ultrasonics 74 62 33 Miri A K and Mitri F G 2011 Ultrasound Med. Biol. 37 301 34 Wang J and Dual J 2012 Ultrasonics 52 325 35 Qiao Y P, Zhang X F and Zhang G B 2017 J. Acoust. Soc. Am. 141 4633 36 Qiao Y P, Zhang X F and Zhang G B 2017 Wave Motion 74 182 37 Qiao Y P, Wang H B, Liu X Z and Zhang X F 2020 Wave Motion 93 102478 38 Zang Y C, Qiao Y P, Liu J H and Liu X Z 2019 Chin. Phys. B 28 034301 39 Wei K and Kaul S 1997 Curr. Opin. Cardiol. 12 539 40 Kheir J N, Zurakowski D, McGowan F X and Bordan M A2007 Crit. Care Med. 35 A16 41 Wu J R and Nyborg W L 2008 Adv. Drug. Deliv. Rev. 60 1103 42 Hasegawa T, Hino Y, Annou A, Noda H, Kato M and Inoue N 1993 J. Acoust. Soc. Am. 93 154 43 Mitri F G 2005 Ultrasonics 43 681 44 Mitri F G 2006 Ultrasonics 44 244 45 Zang Y C and Lin W J 2020 Results Phys. 16 102847 46 Gutierrez-Vega J C, Rodriguez-Masegosa R and Chavez-Cerda S 2003 J. Opt. Soc. Am. A 20 2113 47 Hakola A, Buchter S C, Kajava T and Turunen J 2004 Opt. Commun. 238 335 48 Altucci C, Bruzzese R, D'Antuoni D, de Lisio C and Solimeno S 2000 J. Opt. Soc. Am. B 17 34 49 Ding D, Wang S and Wang Y 1999 J. Appl. Phys. 86 1716 50 Wang S J1998 J. Northwest Nat. Univ. 34 22 51 Overfelt P L and Kenney C S 1991 J. Opt. Soc. Am. A 8 732 52 Chen J, Liu X Z, Liu J H, Mao Y W and Marston P L 2017 Ultrasonics 76 1 53 Bouchal Z 2003 Czech J. Phys. 53 537 54 Gori F, Guattari G and Padovani C 1987 Opt. Comm. 64 491 55 Gouesbet G, Grehan G and Maheu B 1988 Appl. Opt. 27 4874 56 Huang H and Gaunaurd G C 1997 Int. J. Solids Struct. 34 591 57 Geleskie J V and Shung K K 1982 J. Acoust. Soc. Am. 71 467 58 Gong Z X, Marston P L and Li W 2019 Phys. Rev. E 99 063004 59 Li W, Gui Q and Gong Z X 2019 IEEE Trans. UFFC. 66 1364 60 Vogt R H, Flax L, Dragonette L R and Neubauer W G 1975 J. Acoust. Soc. Am. 57 558 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|