Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044301    DOI: 10.1088/1674-1056/abca27
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam

Yu-Chen Zang(臧雨宸)1,2, Wei-Jun Lin(林伟军)1,2,†, Chang Su(苏畅)1,2, and Peng-Fei Wu(吴鹏飞)1,2
1 Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery, which requires the precise prediction of the acoustic radiation force under various circumstances to improve the system efficiency. The acoustic radiation force exerted by a zero-order quasi-Bessel-Gauss beam on an elastic spherical shell near an impedance boundary is theoretically and numerically studied in this study. By means of the finite series method and the image theory, a zero-order quasi-Bessel-Gauss beam is expanded in terms of spherical harmonic functions, and the exact solution of the acoustic radiation force is derived based on the acoustic scattering theory. The acoustic radiation force function, which represents the radiation force per unit energy density and per unit cross-sectional surface, is especially investigated. Some simulated results for a polymethyl methacrylate shell and an aluminum shell are provided to illustrate the behavior of acoustic radiation force in this case. The simulated results show the oscillatory property and the negative radiation force caused by the impedance boundary. An appropriate relative thickness of the shell can generate sharp peaks for a polymethyl methacrylate shell. Strong radiation force can be obtained at small half-cone angles and the beam waist only affects the results at high frequencies. Considering that the quasi-Bessel-Gauss beam possesses both the energy focusing property and the non-diffracting advantage, this study is expected to be useful in the development of acoustic tweezers, contrast agent micro-shells, and drug delivery applications.
Keywords:  acoustic radiation force      zero-order quasi-Bessel-Gauss beam      impedance boundary      elastic spherical shell  
Received:  16 September 2020      Revised:  03 November 2020      Accepted manuscript online:  13 November 2020
PACS:  43.25.Qp (Radiation pressure?)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  43.80.Gx (Mechanisms of action of acoustic energy on biological systems: physical processes, sites of action)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81527901, 11604361, and 91630309).
Corresponding Authors:  Corresponding author. E-mail: linwj@mail.ioa.ac.cn   

Cite this article: 

Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞) Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam 2021 Chin. Phys. B 30 044301

1 Wu J R 1991 J. Acoust. Soc. Am. 89 2140
2 Lee J W, Ha K L and Shung K K 2005 J. Acoust. Soc. Am. 117 3273
3 Lee J W, Teh S Y, Lee A, Kim H H, Lee C Y and Shung K K 2009 Appl. Phys. Lett. 95 073701
4 Ozcelik A, Rufo J and Guo F 2018 Nat. Methods 15 1021
5 Baudoin M and Thomas J L 2020 Ann. Rev. Fluid Mech. 52 205
6 Lierke E G1996 Acustica 82 220
7 Yarin A L, Pfaffenlehner M and Tropea C 1998 J. Fluid Mech. 356 65
8 Laurell T, Petersson F and Nilsson A 2007 Chem. Soc. Rev. 36 492
9 Manneberg O, Hagsater S M, Svennebring J, Hertz H M, Kutter J P, Bruus H and Wiklund M 2009 Ultrasonics 49 112
10 Rajabi M and Mojahed A 2016 J. Sound Vib. 383 265
11 King L V1934 Proc. Roya. Soc. London, Ser. 147 212
12 Yosioka K and Kawasima Y1955 Acta Acust. United Ac. 5 167
13 Hasegawa T and Yosioka K 1969 J. Acoust. Soc. Am. 46 1139
14 Hasegawa T 1979 J. Acoust. Soc. Am. 65 32
15 Wu J R and Du G H 1990 J. Acoust. Soc. Am. 87 997
16 Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301
17 Marston P L 2006 J. Acoust. Soc. Am. 120 3518
18 Marston P L, Wei W and Thiessen D B2006 AIP Conf. Proc. 838 495
19 Marston P L 2007 J. Acoust. Soc. Am. 122 3162
20 Marston P L 2009 J. Acoust. Soc. Am. 125 3539
21 Mitri F G 2008 Ann. Phys. 323 1604
22 Mitri F G 2009 Ultrasonics 49 794
23 Mitri F G 2009 IEEE Trans. UFFC. 56 1100
24 Mitri F G 2009 IEEE Trans. UFFC. 56 1059
25 Mitri F G 2008 Ann. Phys. 323 2840
26 Mitri F G 2009 J. Phys. A-Math. Theor. 42 245202
27 Mitri F G 2009 Euro. Phys. J. E 28 469
28 Mitri F G 2010 J. Sound Vib. 329 3319
29 Li W, Li J and Gong Z X 2015 Acta Phys. Sin. 64 154305 (in Chinese)
30 Mitri F G 2015 Wave Motion 57 231
31 Mitri F G 2015 Europhys. Lett. 112 34002
32 Mitri F G 2017 Ultrasonics 74 62
33 Miri A K and Mitri F G 2011 Ultrasound Med. Biol. 37 301
34 Wang J and Dual J 2012 Ultrasonics 52 325
35 Qiao Y P, Zhang X F and Zhang G B 2017 J. Acoust. Soc. Am. 141 4633
36 Qiao Y P, Zhang X F and Zhang G B 2017 Wave Motion 74 182
37 Qiao Y P, Wang H B, Liu X Z and Zhang X F 2020 Wave Motion 93 102478
38 Zang Y C, Qiao Y P, Liu J H and Liu X Z 2019 Chin. Phys. B 28 034301
39 Wei K and Kaul S 1997 Curr. Opin. Cardiol. 12 539
40 Kheir J N, Zurakowski D, McGowan F X and Bordan M A2007 Crit. Care Med. 35 A16
41 Wu J R and Nyborg W L 2008 Adv. Drug. Deliv. Rev. 60 1103
42 Hasegawa T, Hino Y, Annou A, Noda H, Kato M and Inoue N 1993 J. Acoust. Soc. Am. 93 154
43 Mitri F G 2005 Ultrasonics 43 681
44 Mitri F G 2006 Ultrasonics 44 244
45 Zang Y C and Lin W J 2020 Results Phys. 16 102847
46 Gutierrez-Vega J C, Rodriguez-Masegosa R and Chavez-Cerda S 2003 J. Opt. Soc. Am. A 20 2113
47 Hakola A, Buchter S C, Kajava T and Turunen J 2004 Opt. Commun. 238 335
48 Altucci C, Bruzzese R, D'Antuoni D, de Lisio C and Solimeno S 2000 J. Opt. Soc. Am. B 17 34
49 Ding D, Wang S and Wang Y 1999 J. Appl. Phys. 86 1716
50 Wang S J1998 J. Northwest Nat. Univ. 34 22
51 Overfelt P L and Kenney C S 1991 J. Opt. Soc. Am. A 8 732
52 Chen J, Liu X Z, Liu J H, Mao Y W and Marston P L 2017 Ultrasonics 76 1
53 Bouchal Z 2003 Czech J. Phys. 53 537
54 Gori F, Guattari G and Padovani C 1987 Opt. Comm. 64 491
55 Gouesbet G, Grehan G and Maheu B 1988 Appl. Opt. 27 4874
56 Huang H and Gaunaurd G C 1997 Int. J. Solids Struct. 34 591
57 Geleskie J V and Shung K K 1982 J. Acoust. Soc. Am. 71 467
58 Gong Z X, Marston P L and Li W 2019 Phys. Rev. E 99 063004
59 Li W, Gui Q and Gong Z X 2019 IEEE Trans. UFFC. 66 1364
60 Vogt R H, Flax L, Dragonette L R and Neubauer W G 1975 J. Acoust. Soc. Am. 57 558
[1] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[2] Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2021, 30(4): 044302.
[3] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[4] Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder
F G Mitri. Chin. Phys. B, 2020, 29(11): 114302.
[5] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[6] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[7] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
[8] Tunable acoustic radiation pattern assisted by effective impedance boundary
Feng Qian(钱 枫), Li Quan(全力), Li-Wei Wang(王力维), Xiao-Zhou Liu (刘晓宙), Xiu-Fen Gong(龚秀芬). Chin. Phys. B, 2016, 25(2): 024301.
No Suggested Reading articles found!