Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120402    DOI: 10.1088/1674-1056/ab5210
GENERAL Prev   Next  

A new type of adiabatic invariants for disturbednon-conservative nonholonomic system

Xin-Xin Xu(徐鑫鑫)1, Yi Zhang(张毅)2
1 College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China;
2 College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Abstract  According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equations of motion of the non-conservative nonholonomic system based upon the generalized variational principle of Herglotz type are given, and the exact invariant for the non-conservative nonholonomic system is introduced. Secondly, a new type of adiabatic invariant for the system under the action of a small perturbation is obtained. Thirdly, the inverse theorem of the adiabatic invariant is given. Finally, an example is given.
Keywords:  non-conservative nonholonomic mechanics      adiabatic invariants      differential variational principle of Herglotz type  
Received:  18 July 2019      Revised:  27 September 2019      Accepted manuscript online: 
PACS:  04.20.Fy (Canonical formalism, Lagrangians, and variational principles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572212, 11272227, and 10972151) and the Innovation Program for Postgraduade in Higher Education Institutions of Jiangsu Province, China (Grant No. KYCX18_2548).
Corresponding Authors:  Yi Zhang     E-mail:  zhy@mail.usts.edu.cn

Cite this article: 

Xin-Xin Xu(徐鑫鑫), Yi Zhang(张毅) A new type of adiabatic invariants for disturbednon-conservative nonholonomic system 2019 Chin. Phys. B 28 120402

[35] Song C J and Zhang Y 2015 Commun. Theor. Phys. 64 171
[1] Herglotz G 1979 Gesammelte Schriften (Göttingen: Vandenhoeck & Ruprecht)
[36] Zhang Y, Fan C X and Mei F X 2016 Acta Phys. Sin. 55 3237 (in Chinese)
[2] Georgieva B and Guenter R 2002 Topol. Method. Nonl. An. 20 261
[3] Georgieva B, Guenter R and Bodurov T 2003 J. Math. Phys. 44 3911
[4] Santos S P S, Martins N and Torres D F M 2014 Vieynam J. Math. 42 409
[5] Santos S P S, Martins N and Torres D F M 2015 Discr. Contin. Dyn. Syst. 35 4593
[6] Zhang Y 2016 Chin. J. Theor. Appl. Mech. 48 1382 (in Chinese)
[7] Zhang Y and Tian X 2018 Phys. Lett. A 383 691
[8] Zhang Y 2017 Acta Mech. 228 1481
[9] Zhang Y and Tian X 2018 Chin. Phys. B 27 090502
[10] Tian X and Zhang Y 2018 Int. J. Theor. Phys. 57 887
[11] Zhang Y 2018 Int. J. Non-Linear Mech. 101 36
[12] Zhang Y 2018 R. Soc. Open Sci. 5 180208
[13] Almeida R and Malinowska A B 2014 Discr. Contin. Dyn. Syst. B 19 2367
[14] Garra R, Taverna G S and Torres D F M 2017 Chaos Soliton. Fract. 102 94
[15] Almeida R 2017 J. Optim. Theory Appl. 174 276
[16] Tian X and Zhang Y 2018 Commun. Theor. Phys. 70 280
[17] Tian X and Zhang Y 2019 Chaos Soliton. Fract. 119 50
[18] Vujanovic B 1987 Acta Mech. 65 63
[19] Liu D 1989 Acta Mech. Sin. 21 75 (in Chinese)
[20] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) p. 228 (in Chinese)
[21] Burgers J M 1917 Ann. Phys. 357 195
[22] Bulanov S V and Shasharina S G 1992 Nucl. Fusion 32 1531
[23] Kruskal M 1962 J. Math. Phys. 3 806
[24] Djukic D S 1981 Int. J. Non-Linear Mech. 16 489
[25] Zhao Y Y and Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese)
[26] Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16 282
[27] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[28] Zhang Y 2006 Chin. Phys. Lett. 15 1935
[29] Zhang Y 2011 Chin. J. Phys. 49 1005
[30] Zhang Y 2006 Acta Phys. Sin. 55 3833 (in Chinese)
[31] Luo S K 2007 Chin. Phys. Lett. 24 2463
[32] Ding N and Fang J H 2010 Commun. Theor. Phys. 54 785
[33] Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese)
[34] Chen J and Zhang Y 2014 Acta Phys. Sin. 63 104501 (in Chinese)
[35] Song C J and Zhang Y 2015 Commun. Theor. Phys. 64 171
[36] Zhang Y, Fan C X and Mei F X 2016 Acta Phys. Sin. 55 3237 (in Chinese)
[1] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
No Suggested Reading articles found!