Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080702    DOI: 10.1088/1674-1056/25/8/080702
GENERAL Prev   Next  

Experimental research on spectrum and imaging of continuous-wave terahertz radiation based on interferometry

Tie-Lin Lu(卢铁林)1, Hui Yuan(袁 慧)1, Ling-Qin Kong(孔令琴)1, Yue-Jin Zhao(赵跃进)1, Liang-Liang Zhang(张亮亮)2, Cun-Lin Zhang(张存林)2
1 Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  A system for measuring terahertz spectrum is proposed based on optical interferometer theory, and is experimentally demonstrated by using a backward-wave oscillator as the terahertz source. A high-resolution, high-precision interferometer is constructed by using a pyroelectric detector and a chopper. The results show that the spectral resolution is better than 1 GHz and the relative error of frequency is less than 3%. The terahertz energy density distribution is calculated by an inverse Fourier transform and tested to verify the feasibility of the interferometric approach. Two kinds of carbon-fiber composites are imaged. The results confirm that the interferometer is useful for transmission imaging of materials with different thickness values.
Keywords:  terahertz      spectral measurements      interferometer      imaging  
Received:  29 January 2016      Revised:  16 March 2016      Accepted manuscript online: 
PACS:  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377109 and 11374007).
Corresponding Authors:  Yue-Jin Zhao     E-mail:  yjzhao@bit.edu.cn

Cite this article: 

Tie-Lin Lu(卢铁林), Hui Yuan(袁 慧), Ling-Qin Kong(孔令琴), Yue-Jin Zhao(赵跃进), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林) Experimental research on spectrum and imaging of continuous-wave terahertz radiation based on interferometry 2016 Chin. Phys. B 25 080702

[1] Peiponen K E, Zeitler A and Kuwata-Gonokami M 2012 Terahertz Spectroscopy and Imaging, 2nd edn. (New York:Springer) pp. 29-40
[2] Lu T L, Yuan H, Zhang J S, Zhang L L, Zhang C L and Zhao Y J 2015 Proceedings of International Optical Instruments and Technology, April 17-19, 2015, Beijing, China, p. 962506
[3] Yang Z G, Zhao B Q, Liu J S and Wang K J 2013 Physics 42 708 (in Chinese)
[4] Yang Y P, Yang Y H and Grischkowsky D R 2013 Physics 42 712 (in Chinese)
[5] Capasso F, Paiella R, Martini R, Colombelli R, Gmachl C, Myers T L, Taubman M S, Williams R M, Bethea C G, Unterrainer K, Hwang H Y, Sivco D L, Cho A Y, Sergent A M, Liu H C and Whittaker E A 2002 IEEE J. Quantum Electron. 38 511
[6] Yokoyama S, Nakamura R, Nose M, Araki T and Yasui T 2008 Opt. Express 16 13052
[7] Yasui T, Nakamura R, Kawamoto K, Ihara A, Fujimoto Y, Yokoyama S, Inaba H, Minoshima K, Nagatsuma T and Araki T 2009 Opt. Express 17 17034
[8] Gaal P, Raschke M B, Reimann K and Woerner M 2007 Nat. Photon. 1 577
[9] Yasui T, Kabetani Y, Saneyoshi E, Yokoyama S and Araki T 2006 Appl. Phys. Lett. 88 241104
[10] Morikawa O, Tani M, Fujita M and Hangyo M 2007 Jpn. J. Appl. Phys. 46 951
[11] Kokkonen K and Kaivola M 2008 Appl. Phys. Lett. 92 063502
[12] Deninger A J, Göbel T, Schönherr D, Kinder T, Roggenbuck A, Köberle M, Lison F, Müller-Wirts T and Meissner P 2008 Rev. Sci. Instrum. 79 044702
[13] Johnson J L, Dorney T D and Mittleman D M 2000 Appl. Phys. Lett. 78 835
[14] Naftaly M, Dean P, Miles R E, Fletcher J and Malcoci A 2008 IEEE J. Quantum Electron. 14 443
[15] Zhao J, Zhang L L, Luo Y M, Wu T, Zhang C L and Zhao Y J 2014 Chin. Phys. B 23 127201
[16] Zhang L L, Mu K J, Zhou Y S, Wang H, Zhang C L and Zhang X C 2015 Sci. Rep. 5 12536
[17] Hils B, Thomson M D, Löffler T, Spiegel W, Weg C, Roskos H, Maagt P, Doyle D and Geckeler R 2008 Opt. Express 16 11289
[18] Wang X, Hou L and Zhang Y 2010 Appl. Opt. 49 5095
[19] Wang Y, Zhao Z, Chen Z, Zhang L, Kang K and Deng J 2011 Appl. Opt. 50 6452
[20] Sun W, Wang X and Zhang Y 2013 Optik-International Journal for Light and Electron Optics 124 5533
[21] Wichmann M, Stein M, Rahimi-Iman A, Koch S W and Koch M 2014 Journal of Infrared, Millimeter and Terahertz Waves 35 503
[22] Hecht E and Zajac A 2002 Optics, 4nd edn. (San Francisco:Addison-Wesley) pp. 519-556
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[8] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[9] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[10] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[11] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[12] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[13] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[14] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[15] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
No Suggested Reading articles found!