|
|
Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme |
Alireza Khanzadeh, Mahdi Pourgholi |
Faculty of Electrical Engineering, Shahid Beheshti University, A. C. Tehran, Iran |
|
|
Abstract In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
|
Received: 25 September 2015
Revised: 25 April 2016
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Corresponding Authors:
Mahdi Pourgholi
E-mail: m_pourgholi@sbu.ac.ir
|
Cite this article:
Alireza Khanzadeh, Mahdi Pourgholi Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme 2016 Chin. Phys. B 25 080501
|
[1] |
Yassen M 2007 Phys. Lett. A 360 582
|
[2] |
Yu Y and Zhang S 2004 Chaos, Solitons & Fractals 21 643
|
[3] |
Wang F and Liu C 2006 Phys. Lett. A 360 274
|
[4] |
Jiang G P, Chen G and Tang W K S 2003 Int. J. Bifur. Chaos 13 2343
|
[5] |
Chen H H, Sheu G J, Lin Y L and Chen C S 2009 Nonlinear Analysis:Theory, Methods & Applications 70 4393
|
[6] |
Chen S and Lu J 2002 Chaos, Solitons & Fractals 14 643
|
[7] |
Park J 2005 Chaos, Solitons & Fractals 26 959
|
[8] |
Wang T and Jia N 2012 Appl. Math. Comput. 218 7231
|
[9] |
Yau H T and Shieh C S 2008 Nonlinear Analysis:Real World Applications 9 1800
|
[10] |
Kuntanapreeda S 2009 Phys. Lett. A 373 2837
|
[11] |
Jiang G P, Zheng W X, Tang W K S and Chen G 2006 IEEE Trans. Circuits and Systems II:Express Briefs 53 110
|
[12] |
Wen G and Xu D 2005 Chaos, Solitons & Fractals 26 71
|
[13] |
Chen H 2005 Chaos, Solitons & Fractals 25 1049
|
[14] |
Lei Y, Xu W and Zheng H 2005 Phys. Lett. A 343 153
|
[15] |
Ho M C, Hung Y C and Chou C H 2002 Phys. Lett. A 296 43
|
[16] |
Zhang H and Ma X 2004 Chaos, Solitons & Fractals 21 39
|
[17] |
Shen L and Wang M 2008 Chaos, Solitons & Fractals 38 106
|
[18] |
Li K Z, Zhao M C and Fu X C 2009 IEEE Trans. Circuits and Systems I:Regular Papers 56 2280
|
[19] |
Shen L, Liu W and Ma J 2009 Chaos, Solitons & Fractals 42 1292
|
[20] |
Du H, Zeng Q, Wang C and Ling M 2010 Nonlinear Analysis:Real World Applications 11 705
|
[21] |
Al-Sawalha A 2009 Chaos, Solitons & Fractals 42 1926
|
[22] |
Wang Z 2009 Nonlinear Dynamics 59 455
|
[23] |
Haeri M and Emadzadeh A A 2007 Chaos, Solitons & Fractals 31 119
|
[24] |
Vasegh N and Khellat F 2009 Chaos, Solitons & Fractals 42 1045
|
[25] |
Chen D, Zhang R, Ma X and Liu S 2012 Nonlinear Dynamics 69 35
|
[26] |
Kocamaz U E, Uyaroglu Y and Kizmaz H 2014 International Journal of Adaptive Control and Signal Processing 28 1413
|
[27] |
Ablay G 2009 Nonlinear Analysis:Hybrid Systems 3 531
|
[28] |
Chiang T Y, Hung M L, Yan J J, Yang Y S and Chang J F 2007 Chaos, Solitons & Fractals 34 437
|
[29] |
Kuo C 2011 Computers & Mathematics with Applications 61 2090
|
[30] |
Cai N, Jing Y and Zhang S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1613
|
[31] |
Yau H T, Kuo C L and Yan J J 2006 Int. J. Nonlinear Sci. Numer. Simul. 7 333
|
[32] |
Lin T C, Chen M C and Roopaei M 2011 Engineering Applications of Artificial Intelligence 24 39
|
[33] |
Yang C C and Ou C J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 682
|
[34] |
Roopaei M, Sahraei B R and Lin T C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4158
|
[35] |
Zhang B and Guo H 2015 Nonlinear Dynamics 81 867
|
[36] |
Yahyazaddeh M, Noei A R and Ghaderi R 2011 ISA Transactions 50 262
|
[37] |
Feki M 2009 Chaos, Solitons & Fractals 41 1390
|
[38] |
Zhang H, Ma X K and Liu W Z 2004 Chaos, Solitons & Fractals 21 1249
|
[39] |
Kuo C L, Shieh C S, Lin C H and Shih S P 2007 Commun. Comput. Inform. Sci. 5 36
|
[40] |
Louodop P, Kountchou M, Fotsin H and Bowong S 2014 Nonlinear Dynamics 78 597
|
[41] |
Yu W 2010 Phys. Lett. A 374 3021
|
[42] |
Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Nonline Analysis:Real World Applications 10 2842
|
[43] |
Guo R and Vincent U E 2010 Phys. Lett. A 375 119
|
[44] |
Kazerooni M, Pourdehi S, Sarvestani A S and Sarvestani R S 2013 3rd International Conference on Control, Instrumentation and Automation (ICCIA) p. 107
|
[45] |
Wang J, Chen X and Fu J 2014 Nonlinear Dynamics 78 1321
|
[46] |
Zhou X, Jiang M and Cai X 2014 Abstract and Applied Analysis 2014 1
|
[47] |
Wang T, Zhao S, Zhou W and Yu W 2014 ISA Transactions 53 1184
|
[48] |
Chuang C F, Wang W J, Sun Y J and Chen Y J 2013 Int. J. Sys. Sci. 44 1052
|
[49] |
Sun J, Shen Y, Wang X and Chen J 2014 Nonlinear Dynamics 76 383
|
[50] |
Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080
|
[51] |
Aghababa M P and Aghababa H P 2013 Arabian Journal for Science and Engineering 38 3221
|
[52] |
Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1410
|
[53] |
Xiang W and Huangpu Y 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3241
|
[54] |
Mobayen S 2014 Complexity
|
[55] |
Sun J, Shen Y, Wang X and Chen J 2014 Nonlinear Dynamics 76 383
|
[56] |
Effati S, Saberi N H and Jajarmi A 2013 Nonlinear Dynamics 73 499
|
[57] |
Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Nonlinear Analysis:Real World Applications 10 2842
|
[58] |
Bhat S P and Bernstein D S 2000 SIAM Journal on Control and Optimization 38 751
|
[59] |
Aghababa M P and Feizi H 2012 Transactions of the Institute of Measurement and Control 34 990
|
[60] |
Liu J and Sun F 2007 Journal of Control Theory and Applications 5 189
|
[61] |
Lu J and Chen G 2002 Int. J. Bifur. Chaos 12 659
|
[62] |
Wang Z 2010 Nonlinear Dynamics 59 455
|
[63] |
Banerjee S, Mitra M and Rondoni L 2011 Oscillations, Feedback and Bifurcation in Mathematical Models of Angiogenesis and Haematopoiesis, Vol. 1 (Berlin:Springer)
|
[64] |
Zhang J, Li C, Zhang H and Yu J 2004 Chaos, Solitons & Fractals 21 1183
|
[65] |
Ho M C and Hung Y C 2002 Phys. Lett. A 301 424
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|