Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080501    DOI: 10.1088/1674-1056/25/8/080501
GENERAL Prev   Next  

Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

Alireza Khanzadeh, Mahdi Pourgholi
Faculty of Electrical Engineering, Shahid Beheshti University, A. C. Tehran, Iran
Abstract  In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
Keywords:  chaos synchronization      finite time synchronization      sliding mode controller      time varying switching surfaces  
Received:  25 September 2015      Revised:  25 April 2016      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Corresponding Authors:  Mahdi Pourgholi     E-mail:  m_pourgholi@sbu.ac.ir

Cite this article: 

Alireza Khanzadeh, Mahdi Pourgholi Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme 2016 Chin. Phys. B 25 080501

[1] Yassen M 2007 Phys. Lett. A 360 582
[2] Yu Y and Zhang S 2004 Chaos, Solitons & Fractals 21 643
[3] Wang F and Liu C 2006 Phys. Lett. A 360 274
[4] Jiang G P, Chen G and Tang W K S 2003 Int. J. Bifur. Chaos 13 2343
[5] Chen H H, Sheu G J, Lin Y L and Chen C S 2009 Nonlinear Analysis:Theory, Methods & Applications 70 4393
[6] Chen S and Lu J 2002 Chaos, Solitons & Fractals 14 643
[7] Park J 2005 Chaos, Solitons & Fractals 26 959
[8] Wang T and Jia N 2012 Appl. Math. Comput. 218 7231
[9] Yau H T and Shieh C S 2008 Nonlinear Analysis:Real World Applications 9 1800
[10] Kuntanapreeda S 2009 Phys. Lett. A 373 2837
[11] Jiang G P, Zheng W X, Tang W K S and Chen G 2006 IEEE Trans. Circuits and Systems II:Express Briefs 53 110
[12] Wen G and Xu D 2005 Chaos, Solitons & Fractals 26 71
[13] Chen H 2005 Chaos, Solitons & Fractals 25 1049
[14] Lei Y, Xu W and Zheng H 2005 Phys. Lett. A 343 153
[15] Ho M C, Hung Y C and Chou C H 2002 Phys. Lett. A 296 43
[16] Zhang H and Ma X 2004 Chaos, Solitons & Fractals 21 39
[17] Shen L and Wang M 2008 Chaos, Solitons & Fractals 38 106
[18] Li K Z, Zhao M C and Fu X C 2009 IEEE Trans. Circuits and Systems I:Regular Papers 56 2280
[19] Shen L, Liu W and Ma J 2009 Chaos, Solitons & Fractals 42 1292
[20] Du H, Zeng Q, Wang C and Ling M 2010 Nonlinear Analysis:Real World Applications 11 705
[21] Al-Sawalha A 2009 Chaos, Solitons & Fractals 42 1926
[22] Wang Z 2009 Nonlinear Dynamics 59 455
[23] Haeri M and Emadzadeh A A 2007 Chaos, Solitons & Fractals 31 119
[24] Vasegh N and Khellat F 2009 Chaos, Solitons & Fractals 42 1045
[25] Chen D, Zhang R, Ma X and Liu S 2012 Nonlinear Dynamics 69 35
[26] Kocamaz U E, Uyaroglu Y and Kizmaz H 2014 International Journal of Adaptive Control and Signal Processing 28 1413
[27] Ablay G 2009 Nonlinear Analysis:Hybrid Systems 3 531
[28] Chiang T Y, Hung M L, Yan J J, Yang Y S and Chang J F 2007 Chaos, Solitons & Fractals 34 437
[29] Kuo C 2011 Computers & Mathematics with Applications 61 2090
[30] Cai N, Jing Y and Zhang S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1613
[31] Yau H T, Kuo C L and Yan J J 2006 Int. J. Nonlinear Sci. Numer. Simul. 7 333
[32] Lin T C, Chen M C and Roopaei M 2011 Engineering Applications of Artificial Intelligence 24 39
[33] Yang C C and Ou C J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 682
[34] Roopaei M, Sahraei B R and Lin T C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 4158
[35] Zhang B and Guo H 2015 Nonlinear Dynamics 81 867
[36] Yahyazaddeh M, Noei A R and Ghaderi R 2011 ISA Transactions 50 262
[37] Feki M 2009 Chaos, Solitons & Fractals 41 1390
[38] Zhang H, Ma X K and Liu W Z 2004 Chaos, Solitons & Fractals 21 1249
[39] Kuo C L, Shieh C S, Lin C H and Shih S P 2007 Commun. Comput. Inform. Sci. 5 36
[40] Louodop P, Kountchou M, Fotsin H and Bowong S 2014 Nonlinear Dynamics 78 597
[41] Yu W 2010 Phys. Lett. A 374 3021
[42] Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Nonline Analysis:Real World Applications 10 2842
[43] Guo R and Vincent U E 2010 Phys. Lett. A 375 119
[44] Kazerooni M, Pourdehi S, Sarvestani A S and Sarvestani R S 2013 3rd International Conference on Control, Instrumentation and Automation (ICCIA) p. 107
[45] Wang J, Chen X and Fu J 2014 Nonlinear Dynamics 78 1321
[46] Zhou X, Jiang M and Cai X 2014 Abstract and Applied Analysis 2014 1
[47] Wang T, Zhao S, Zhou W and Yu W 2014 ISA Transactions 53 1184
[48] Chuang C F, Wang W J, Sun Y J and Chen Y J 2013 Int. J. Sys. Sci. 44 1052
[49] Sun J, Shen Y, Wang X and Chen J 2014 Nonlinear Dynamics 76 383
[50] Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080
[51] Aghababa M P and Aghababa H P 2013 Arabian Journal for Science and Engineering 38 3221
[52] Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1410
[53] Xiang W and Huangpu Y 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3241
[54] Mobayen S 2014 Complexity
[55] Sun J, Shen Y, Wang X and Chen J 2014 Nonlinear Dynamics 76 383
[56] Effati S, Saberi N H and Jajarmi A 2013 Nonlinear Dynamics 73 499
[57] Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Nonlinear Analysis:Real World Applications 10 2842
[58] Bhat S P and Bernstein D S 2000 SIAM Journal on Control and Optimization 38 751
[59] Aghababa M P and Feizi H 2012 Transactions of the Institute of Measurement and Control 34 990
[60] Liu J and Sun F 2007 Journal of Control Theory and Applications 5 189
[61] Lu J and Chen G 2002 Int. J. Bifur. Chaos 12 659
[62] Wang Z 2010 Nonlinear Dynamics 59 455
[63] Banerjee S, Mitra M and Rondoni L 2011 Oscillations, Feedback and Bifurcation in Mathematical Models of Angiogenesis and Haematopoiesis, Vol. 1 (Berlin:Springer)
[64] Zhang J, Li C, Zhang H and Yu J 2004 Chaos, Solitons & Fractals 21 1183
[65] Ho M C and Hung Y C 2002 Phys. Lett. A 301 424
[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[3] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[4] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[5] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[6] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[7] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[8] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi . Chin. Phys. B, 2012, 21(6): 060504.
[9] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[10] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2012, 21(3): 030502.
[11] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[12] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
[13] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi and Vahid Johari Majd . Chin. Phys. B, 2011, 20(12): 120503.
[14] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling(吕翎), Li Gang(李钢), Guo Li(郭丽), Meng Le(孟乐),Zou Jia-Rui(邹家蕊), and Yang Ming(杨明). Chin. Phys. B, 2010, 19(8): 080507.
[15] Asymptotical p-moment stability of stochastic impulsive differential system and its application to chaos synchronization
Niu Yu-Jun(牛玉俊), Xu Wei(徐伟), and Lu Zhao-Yang(陆朝阳). Chin. Phys. B, 2010, 19(3): 030512.
No Suggested Reading articles found!