Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 108503    DOI: 10.1088/1674-1056/27/10/108503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase transition and charge transport through a triple dot device beyond the Kondo regime

Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东)
School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China
Abstract  

Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single, double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.

Keywords:  semiconductor quantum dot device      parallel triple dot structure      quantum phase transition      charge transport      strongly correlated effect  
Received:  07 June 2018      Revised:  03 July 2018      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11504102), the Scientific Research Items Foundation of Hubei Educational Committee (Grant Nos. Q20161803 and D20171803), the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology (Grant No. BK201407).

Corresponding Authors:  Yong-Chen Xiong     E-mail:  xiongyc_lx@huat.edu.cn

Cite this article: 

Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东) Phase transition and charge transport through a triple dot device beyond the Kondo regime 2018 Chin. Phys. B 27 108503

[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] Tanamoto T 2000 Phys. Rev. A 61 022305
[3] Heersche H B, de Groot Z, Folk J A, Kouwenhoven L P and van der Zant H S J 2006 Phys. Rev. Lett. 96 017205
[4] Zaffalon M, Bid A, Heiblum M, Mahalu D and Umansky V 2008 Phys. Rev. Lett. 100 226601
[5] Fang D K, Wu S Q, Zou C Y and Zhao G P 2012 Chin. Phys. Lett. 29 037303
[6] Büsser C A and Heidrich-Meisner F 2013 Phys. Rev. Lett. 111 246807
[7] Luo K, Wang F Q, Liang R S and Ren Z Z 2014 Chin. Phys. B 23 107103
[8] Wong A, Ngo A T and Ulloa S E 2016 Phys. Rev. B 94 155130
[9] Kleeorin Y and Meir Y 2017 Phys. Rev. B 96 045118
[10] Taylor J M, Srinivasa V and Medford J 2013 Phys. Rev. Lett. 111 050502
[11] Wang B C, Cao G, Li H O, Xiao M, Guo G C, Hu X D, Jiang H W and Guo G P 2017 Phys. Rev. Appl. 8 064035
[12] Friesen M, Ghosh J, Eriksson M A and Coppersmith S N 2017 Nat. Commun. 8 15923
[13] Zhang C X, Yang X C and Wang X 2018 Phys. Rev. A 97 042326
[14] Kim M R and Ma D 2015 J. Phys. Chem. Lett. 6 85
[15] Beltako K, Cavassilas N and Michelini F 2016 Appl. Phys. Lett. 109 073501
[16] Schröer D, Greentree A D, Gaudreau L, Eberl K, Hollenberg L C L, Kotthaus J P and Ludwig S 2007 Phys. Rev. B 76 075306
[17] Stopa M 2002 Phys. Rev. Lett. 88 146802
[18] Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
[19] Žitko R, Bonča J, Ramšak A and Rejec T 2006 Phys. Rev. B 73 153307
[20] Huang R, Ming S W and Wang Y 2012 Chin. Phys. Lett. 29 047201
[21] Baruselli P P, Requist R, Fabrizio M and Tosatti E 2013 Phys. Rev. Lett. 111 047201
[22] López R, Rejec T, Martinek J and Žitko R 2013 Phys. Rev. B 87 035135
[23] Žitko R and Bonča J 2007 Phys. Rev. Lett. 98 047203
[24] Tooski S B, Ramšak A and Bulka B R 2016 Physica E 75 345
[25] Pöltl C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313
[26] Zhu J and Li G 2012 Phys. Rev. A 86 053828
[27] Wang W Z 2007 Phys. Rev. B 76 115114
[28] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[29] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[30] Xiong Y C, Huang H M, Zhao W L and Laref A 2017 J. Phys.:Condens. Matter 29 405601
[31] Xiong Y C, Zhang J, Zhou W H and Laref A 2017 Chin. Phys. B 26 097102
[32] Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
[33] Lobos A M and Aligia A A 2006 Phys. Rev. B 74 165417
[34] Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303
[35] Chiappe G, Anda E V, Ribeiro L C and Louis E 2010 Phys. Rev. B 81 041310(R)
[36] Andrade J A and Cornaglia P S 2016 Phys. Rev. B 94 235112
[37] Wang W Z 2008 Phys. Rev. B 78 235316
[38] Vernek E, Büsser C A, Martins G B, Anda E V, Sandler N and Ulloa S E 2009 Phys. Rev. B 80 035119
[39] Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Taruch S 2011 Phys. Rev. B 83 205304
[40] Xiong Y C, Wang W Z, Luo S J, Yang J T and Huang H M 2016 J. Magn. Magn. Mater. 399 5
[41] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[42] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
[43] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[44] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[45] Žitko R and Bonča J 2007 Phys. Rev. B 76 241305
[46] Proetto C R and López A 1981 Phys. Rev. B 24 3031
[47] Simonin J 2006 Phys. Rev. Lett. 97 266804
[48] Xiong Y C, Zhao W L and Luo S J 2017 Superlattice Microst. 109 394
[49] Žitko R and Bonča J 2006 Phys. Rev. B 74 045312
[50] Ding G H, Ye F and Dong B 2009 J. Phys.:Condens. Matter 21 455303
[51] Xiong Y C, Luo S J, Huang H M and Yang J T 2015 J. Supercond. Nov. Magn. 28 2553
[52] Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
[53] Langreth D C 1966 Phys. Rev. 150 516
[54] Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[7] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[8] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[9] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[12] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[13] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[14] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[15] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
No Suggested Reading articles found!