INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Phase transition and charge transport through a triple dot device beyond the Kondo regime |
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东) |
School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China |
|
|
Abstract Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single, double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.
|
Received: 07 June 2018
Revised: 03 July 2018
Accepted manuscript online:
|
PACS:
|
85.35.-p
|
(Nanoelectronic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504102), the Scientific Research Items Foundation of Hubei Educational Committee (Grant Nos. Q20161803 and D20171803), the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology (Grant No. BK201407). |
Corresponding Authors:
Yong-Chen Xiong
E-mail: xiongyc_lx@huat.edu.cn
|
Cite this article:
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东) Phase transition and charge transport through a triple dot device beyond the Kondo regime 2018 Chin. Phys. B 27 108503
|
[1] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[2] |
Tanamoto T 2000 Phys. Rev. A 61 022305
|
[3] |
Heersche H B, de Groot Z, Folk J A, Kouwenhoven L P and van der Zant H S J 2006 Phys. Rev. Lett. 96 017205
|
[4] |
Zaffalon M, Bid A, Heiblum M, Mahalu D and Umansky V 2008 Phys. Rev. Lett. 100 226601
|
[5] |
Fang D K, Wu S Q, Zou C Y and Zhao G P 2012 Chin. Phys. Lett. 29 037303
|
[6] |
Büsser C A and Heidrich-Meisner F 2013 Phys. Rev. Lett. 111 246807
|
[7] |
Luo K, Wang F Q, Liang R S and Ren Z Z 2014 Chin. Phys. B 23 107103
|
[8] |
Wong A, Ngo A T and Ulloa S E 2016 Phys. Rev. B 94 155130
|
[9] |
Kleeorin Y and Meir Y 2017 Phys. Rev. B 96 045118
|
[10] |
Taylor J M, Srinivasa V and Medford J 2013 Phys. Rev. Lett. 111 050502
|
[11] |
Wang B C, Cao G, Li H O, Xiao M, Guo G C, Hu X D, Jiang H W and Guo G P 2017 Phys. Rev. Appl. 8 064035
|
[12] |
Friesen M, Ghosh J, Eriksson M A and Coppersmith S N 2017 Nat. Commun. 8 15923
|
[13] |
Zhang C X, Yang X C and Wang X 2018 Phys. Rev. A 97 042326
|
[14] |
Kim M R and Ma D 2015 J. Phys. Chem. Lett. 6 85
|
[15] |
Beltako K, Cavassilas N and Michelini F 2016 Appl. Phys. Lett. 109 073501
|
[16] |
Schröer D, Greentree A D, Gaudreau L, Eberl K, Hollenberg L C L, Kotthaus J P and Ludwig S 2007 Phys. Rev. B 76 075306
|
[17] |
Stopa M 2002 Phys. Rev. Lett. 88 146802
|
[18] |
Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
|
[19] |
Žitko R, Bonča J, Ramšak A and Rejec T 2006 Phys. Rev. B 73 153307
|
[20] |
Huang R, Ming S W and Wang Y 2012 Chin. Phys. Lett. 29 047201
|
[21] |
Baruselli P P, Requist R, Fabrizio M and Tosatti E 2013 Phys. Rev. Lett. 111 047201
|
[22] |
López R, Rejec T, Martinek J and Žitko R 2013 Phys. Rev. B 87 035135
|
[23] |
Žitko R and Bonča J 2007 Phys. Rev. Lett. 98 047203
|
[24] |
Tooski S B, Ramšak A and Bulka B R 2016 Physica E 75 345
|
[25] |
Pöltl C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313
|
[26] |
Zhu J and Li G 2012 Phys. Rev. A 86 053828
|
[27] |
Wang W Z 2007 Phys. Rev. B 76 115114
|
[28] |
Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
|
[29] |
Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
|
[30] |
Xiong Y C, Huang H M, Zhao W L and Laref A 2017 J. Phys.:Condens. Matter 29 405601
|
[31] |
Xiong Y C, Zhang J, Zhou W H and Laref A 2017 Chin. Phys. B 26 097102
|
[32] |
Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
|
[33] |
Lobos A M and Aligia A A 2006 Phys. Rev. B 74 165417
|
[34] |
Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303
|
[35] |
Chiappe G, Anda E V, Ribeiro L C and Louis E 2010 Phys. Rev. B 81 041310(R)
|
[36] |
Andrade J A and Cornaglia P S 2016 Phys. Rev. B 94 235112
|
[37] |
Wang W Z 2008 Phys. Rev. B 78 235316
|
[38] |
Vernek E, Büsser C A, Martins G B, Anda E V, Sandler N and Ulloa S E 2009 Phys. Rev. B 80 035119
|
[39] |
Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Taruch S 2011 Phys. Rev. B 83 205304
|
[40] |
Xiong Y C, Wang W Z, Luo S J, Yang J T and Huang H M 2016 J. Magn. Magn. Mater. 399 5
|
[41] |
Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
|
[42] |
Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
|
[43] |
Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
|
[44] |
Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
|
[45] |
Žitko R and Bonča J 2007 Phys. Rev. B 76 241305
|
[46] |
Proetto C R and López A 1981 Phys. Rev. B 24 3031
|
[47] |
Simonin J 2006 Phys. Rev. Lett. 97 266804
|
[48] |
Xiong Y C, Zhao W L and Luo S J 2017 Superlattice Microst. 109 394
|
[49] |
Žitko R and Bonča J 2006 Phys. Rev. B 74 045312
|
[50] |
Ding G H, Ye F and Dong B 2009 J. Phys.:Condens. Matter 21 455303
|
[51] |
Xiong Y C, Luo S J, Huang H M and Yang J T 2015 J. Supercond. Nov. Magn. 28 2553
|
[52] |
Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
|
[53] |
Langreth D C 1966 Phys. Rev. 150 516
|
[54] |
Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|