Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 088101    DOI: 10.1088/1674-1056/28/8/088101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thin-film growth behavior of non-planar vanadium oxide phthalocyanine

Tian-Jiao Liu(刘天娇)1, Hua-Yan Xia(夏华艳)1, Biao Liu(刘标)1, Tim S Jones2, Mei Fang(方梅)1, Jun-Liang Yang(阳军亮)1
1 Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
Abstract  

The thin film properties of organic semiconductors are very important to the device performance. Herein, non-planar vanadyl phthalocyanine (VOPc) thin films grown on rigid substrates of indium tin oxide, silicon dioxide, and flexible substrate of kapton by organic molecular beam deposition under vacuum conditions are systematically studied via atomic force microscopy and x-ray diffraction. The results clearly reveal that the morphology and grain size are strongly dependent on the substrate temperature during the process of film deposition. Meanwhile, the VOPc films with the structure of phase I or phase Ⅱ can be modulated via in situ annealing and post-annealing temperature. Furthermore, the crystalline structure and molecular orientation of vapor-deposited VOPc can be controlled using molecular template layer 3, 4, 9, 10-perylene-tetracarboxylic dianhydride (PTCDA), the VOPc film of which exhibits the phase I structure. The deep understanding of growth mechanism of non-planar VOPc film provides valuable information for controlling structure-property relationship and accelerates the application in electronic and optoelectronic devices.

Keywords:  organic semiconductor      thin film      vanadyl phthalocyanine (VOPc)      growth behavior  
Received:  10 April 2019      Revised:  21 May 2019      Accepted manuscript online: 
PACS:  81.05.Fb (Organic semiconductors)  
  68.55.-a (Thin film structure and morphology)  
  81.05.Dz (II-VI semiconductors)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51673214) and the National Key Research and Development Program of China (Grant No. 2017YFA0206600).

Corresponding Authors:  Jun-Liang Yang     E-mail:  junliang.yang@csu.edu.cn

Cite this article: 

Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮) Thin-film growth behavior of non-planar vanadium oxide phthalocyanine 2019 Chin. Phys. B 28 088101

[1] Law K Y and Law K Y 1993 Chem. Rev. 93 40
[2] Torre G D L, Vázquez P, AgullóL ópez F and Torres T 1998 J. Mater. Chem. 8 1671
[3] Qian C, Sun J, Kong L A, Fu Y, Chen Y, Wang J, Wang S, Xie H, Huang H and Yang J 2017 ACS Photon. 4 2573
[4] Ji S, Wang H, Wang T and Yan D 2013 Adv. Mater. 25 1755
[5] Roslan N A, Bakar A A, Bawazeer T M, Alsoufi M S, Alsenany N, Majid W H A and Supangat A 2019 Sens. Actuator B-Chem. 279 148
[6] Urbani M, de la Torre G, Nazeeruddin M K and Torres T 2019 Chem. Soc. Rev. 48 2738
[7] Wang N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
[8] Qian C, Sun J, Zhang L, Xie H, Huang H, Yang J and Gao Y 2015 Syn. Met. 210 336
[9] Wang X, Wang H, Li Y, Shi Z, Yan D and Cui Z 2018 J. Phys. Chem. C 122 11214
[10] He Z S, Yu H M, Peng H and Hou X Y 2015 Chin. Phys. B 24 097201
[11] Griffiths C H, Walker M S and Goldstein P 1976 Mol. Cryst. Liq. Cryst. 33 149
[12] Huang W, Yang B, Jia S, Bo L, Yang J, Zou Y, Jian X, Zhou C and Gao Y 2014 Org. Electron. 15 1050
[13] Huang Y, Jia S, Zhang J, Wang S, Han H, Jian Z, Yan D, Gao Y and Yang J 2016 Org. Electron. 36 73
[14] Blowey P J, Maurer R J, Rochford L A, Duncan D A, Kang J H, Warr D A, Ramadan A J, Lee T L, Thakur P K and Costantini G 2019 J. Phys. Chem. C 123 8101
[15] Witte G and Woell C 2004 J. Mater. Res. 19 1889
[16] Wang H, Song D, Yang J, Yu B, Geng Y and Yan D 2007 Appl. Phys. Lett. 90 253510
[17] Aziz F, Sayyad M H, Sulaiman K, Majlis B H, Karimov K S, Ahmad Z and Sugandi G 2012 Meas. Sci. Technol. 23 014001
[18] Pan Y L, Wu Y J, Chen L B, Zhao Y Y, Shen Y H, Li F M, Shen S Y and Huang D H 1998 Appl. Phys. A 66 569
[19] Gaffo L, Constantino C J L, Moreira W C, Aroca R F and Oliveira O N O 2002 Langmuir 18 3561
[20] Chen J, Huang Z L, Chen C L, Li W Z and Xu W R 2018 J. Cent. South Univ. 25 729
[21] Wang H, Li C H, Wang L J, Wang H B and Yan D H 2010 Chin. Phys. Lett. 27 028502
[22] Yang J Y S and Jones T S 2015 Sci. Rep. 5 9441
[23] Morales-Masis M, Wolf S D, Woods-Robinson R, Ager J W and Ballif C 2017 Adv. Electron. Mater. 3 1600529
[24] Fang S, Tada H and Mashiko S 1996 Appl. Phys. Lett. 69 767
[25] Yu X J, Xu J B, Cheung W Y and Ke N 2007 J. Appl. Phys. 102 103711
[26] Cui X J and Wang L L 2017 Mod. Phys. Lett. B 31 1750108
[27] Yamada K, Hoshi H, Ishikawa K, Takezoe H, Fukuda A and Saiki A 1996 J. Cryst. Growth 160 279
[28] Hoshi H, Hamamoto K, Yamada T, Ishikawa K, Takezoe H, Fukuda A, Fang S, Kohama K and Maruyama Y 1994 Jan. J. Appl. Phys. 33 L1555
[29] McKeown N B 1998 Phthalocyanine Materials: Synthesis, Structure and Function (Cambridge: Cambridge University Press) p. 4
[30] Kolotovska V, Friedrich M, Zahn D R T and Salvan G 2006 J. Cryst. Growth 291 166
[31] Holl, B T, Blanford C F and Stein A 1998 Science 281 538
[32] Yang J, Yan D and Jones T S 2015 Chem. Rev. 115 5570
[33] Schreiber F 2004 Phys. Status Solidi A 201 1037
[34] Saito T, Sisk W, Kobayashi T, Suzuki S and Iwayanagi T 1993 J. Phys. Chem. 97 8026
[35] Yang J L and Yan D H 2009 Chem. Soc. Rev. 38 2634
[36] Qian C, Sun J, Kong L, Gou G, Zhu M, Yuan Y, Huang H, Gao Y and Yang J 2017 Adv. Funct. Mater. 27 1604933
[1] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[4] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[5] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[6] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[7] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[8] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[9] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[10] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[11] Accurate capacitance-voltage characterization of organic thin films with current injection
Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远). Chin. Phys. B, 2021, 30(8): 087301.
[12] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[13] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[14] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[15] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
No Suggested Reading articles found!