Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 084101    DOI: 10.1088/1674-1056/25/8/084101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Utra-thin anisotropic transmitting metasurface for polarization beam splitter application

Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通)
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract  We report a polarization beam splitter based on phase gradient metasurface for microwave frequency region. The metasurface is constructed by anisotropic cells with independent phase response for differently-polarized waves. Through putting different gradient phases for orthogonally-polarized waves on a focusing metasurface, the anisotropic sample has the ability to enhance gain and split orthogonally-polarized waves. The simulation results indicate that the incident spherical waves are converted into plane waves and split into an x-polarized wave with a refraction angle of -24° and a y-polarized wave with a refraction angle of 37.6° in the y direction. For verification, a metasurface sample with a size of 102.5 mm×102.5 mm is fabricated and measured. The consistence between numerical and experimental results validates the improved gain of 10.5-dB against the feed source and the splitting effect. Moreover, the thickness of the proposed metasurface is 3 mm which is ultra-thin against the wavelength at 15 GHz. The proposed prescription opens a new route to the applications of anisotropic metasurface in microwave band.
Keywords:  metasurface      polarization beam splitter  
Received:  02 December 2015      Revised:  17 March 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
Corresponding Authors:  Guang-Ming Wang     E-mail:  wgming01@sina.com

Cite this article: 

Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通) Utra-thin anisotropic transmitting metasurface for polarization beam splitter application 2016 Chin. Phys. B 25 084101

[1] Yu N F, Patrice G, Mikhail A K, Francesco A, Jean-Philippe T, Federico C and Zeno G 2011 Science 334 333
[2] Li X, Xiao S Y, Cai B G, He Q, Cui T J and Zhou L 2012 Opt. Lett. 37 4940
[3] Qu C, Ma S J, Hao J M, Qiu M, Li X, Xiao S Y, Miao Z Q, Dai N, He Q, Sun S L and Zhou L 2015 Phys. Rev. Lett. 115 235503
[4] Holloway C L, Kuester E F, Gordon J A, O'Hara J, Booth J and Smith D R 2012 IEEE Antenn. Propag. M. 54 10
[5] Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C and Luo X G 2013 AIP Adv. 3 052136
[6] Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G and Zhang W L 2014 Opt. Express 22 25931
[7] Qu S W, Wu W W, Chen B J, Yi H, Bai X, Ng K B and Chan C H 2015 Sci. Rep. 5 9367
[8] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014202
[9] Zhang K, Ding X M, Zhang L and Wu Q 2014 New J. Phys. 16 103020
[10] Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z and Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese)
[11] Sun S L, Yang K Y, Wang C M, Juan T K, Chen T K, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L and Tsai D P 2012 Nano Lett. 12 6223
[12] Chiya S and van der Daniel W 2015 Appl. Phys. Lett. 106 113110
[13] Anders P, Michael G N, Rene L E and Sergey I B 2013 Nano Lett. 13 829
[14] Kang M, Feng T H, Wang H T and Li J S 2012 Opt. Express 20 15882
[15] Sun Y Y, Han L S, XiaoY, Wang Z N and Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)
[16] Xu J J, Zhang H C, Zhang Q and Cui T J 2015 Appl. Phys. Lett. 106 021102
[17] Ma H F, Wang G Z, Kong G S and Cui T J 2015 Sci. Rep. 5 9605
[18] Zheng J, Ye Z C, Sun N L, Zhang R, Sheng Z M and Zhang J 2014 Sci. Rep. 4 6491
[19] Wang Y Q, Pu M B, Hu C G, Zhao Z Y, Wang C T and Luo X G 2013 Opt. Commun. 319 14
[20] Jia S L, Wan X, Bao D, Zhao Y J and Cui T J 2015 Laser Photon. Rev. 9 545
[21] Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D and Xu H X 2015 IEEE Trans. Antenn. Propag. 63 5629
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
No Suggested Reading articles found!