Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090701    DOI: 10.1088/1674-1056/26/9/090701
GENERAL Prev   Next  

Microwave coherent manipulation of cold atoms in optically induced fictitious magnetic traps on an atom chip

Feng Zhou(周锋)1,2, Xiao Li(李潇)1,2, Min Ke(柯敏)2,3, Jin Wang(王谨)2,3, Ming-Sheng Zhan(詹明生)1,2,3
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
2 State Key Laboratory of Magnetic and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China;
3 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  

We propose a novel on-chip platform for controlling and manipulating cold atoms precisely and coherently. The scheme is achieved by producing optically induced fictitious magnetic traps (OFMTs) with 790 nm (for 87Rb) circularly polarized laser beams and state-dependent potentials simultaneously for two internal atomic states with microwave coplanar waveguides. We carry out numerical calculations and simulations for controlled collisional interactions between OFMTs and addressable single atoms' manipulation on our designed hybrid atom chips. The results show that our proposed platform is feasible and flexible, which has wide applications including collisional dynamics investigation, entanglement generation, and scalable quantum gates implementation.

Keywords:  atom chips      microwave      fictitious magnetic field      coherent manipulation  
Received:  18 February 2017      Revised:  26 April 2017      Accepted manuscript online: 
PACS:  07.05.Fb (Design of experiments)  
  32.60.+i (Zeeman and Stark effects)  
  37.10.Gh (Atom traps and guides)  
  42.82.-m (Integrated optics)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302800) and the National Natural Science Foundation of China (Grant No. 11674361).

Corresponding Authors:  Min Ke, Ming-Sheng Zhan     E-mail:  kemin21@wipm.ac.cn;mszhan@wipm.ac.cn

Cite this article: 

Feng Zhou(周锋), Xiao Li(李潇), Min Ke(柯敏), Jin Wang(王谨), Ming-Sheng Zhan(詹明生) Microwave coherent manipulation of cold atoms in optically induced fictitious magnetic traps on an atom chip 2017 Chin. Phys. B 26 090701

[1] Keil M, Amit O, Zhou S Y, Groswasser D, Japha Y and Folman R 2016 J. Mod. Opt. 1
[2] Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
[3] Hänsel W, Hommelhoff P, Hänsch T W and Reichel J 2001 Nature 413 498
[4] Li X L, Ke M, Yan B and Wang Y Z 2007 Chin. Phys. Lett. 24 01545
[5] Yan B, Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B. 18 04259
[6] Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R and and Wu S J 2005 Phys. Rev. Lett. 94 090405
[7] Szmuk R, Dugrain V, Maineult W, Reichel J and Rosenbusch P 2015 Phys. Rev. A 92 012106
[8] Hofferberth B, Lesanovsky I, Fischer B, Verdu J and Schmiedmayer J 2006 Nat. Phys. 2 710
[9] Böhi P, Riedel M F, Hoffrogge J, Reichel J, Hänsch T W and Treutlein P 2009 Nat. Phys. 5 592
[10] Takamizawa A, Steinmetz T, Delhuille R, Hänsch T W and Reichel J 2006 Opt. Express 14 10976
[11] Wilzbach M, Heine D, Groth S, Liu X, Raub T, Hessmo B and Schmiedmayer J 2009 Opt. Lett. 34 259
[12] Kohnen M, Succo M, Petrov P G, Nyman R A, Trupke M and Hinds E A 2011 Nat. Photon. 5 35
[13] Ke M, Zhou F, Li X, Wang J and Zhan M S 2016 Opt. Express 24 9157
[14] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
[15] Calarco T, Hinds E A, Jaksch D, Schmiedmayer J, Cirac J I and Zoller P 2000 Phys. Rev. A 61 022304
[16] Cirone M A, Negretti A, Calarco T, Krüger P and Schmiedmayer J 2005 Eur. Phys. J. D 35 165
[17] Treulein P, Hänsch T W, Reichel J, Negretti A, Cirone M A and Calarco T 2006 Phys. Rev. A 74 022312
[18] Charron E, Cirone M A, Negretti A, Schmiedmayer J and Calarco T 2006 Phys. Rev. A 74 012308
[19] Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G and Saffman M 2006 Phys. Rev. Lett. 96 063001
[20] He X D, Xu P, Wang J and Zhan M S 2009 Opt. Express 17 21007
[21] Weitenberg C, Kuhr S, Molmer K and Sherson J F 2011 Phys. Rev. A 84 032322
[22] Xu P, Yang J H, Liu M, He X D, Zeng Y, Wang K P, Wang J, Papoular D J, Shlyapnikov G V and Zhan M S 2015 Nat. Commun. 6 7803
[23] Park C Y, Noh H, Lee C M and Cho D 2001 Phys. Rev. A 63 032512
[24] Park C Y, Kim J Y, Song J M and Cho D 2002 Phys. Rev. A 85 033410
[25] Cho D 1997 J. Korean Phys. Soc. 30 373
[26] Yang G Q, Yan H, Shi T, Wang J and Zhan M S 2008 Phys. Rev. A 78 033415
[27] Yan H 2010 Phys. Rev. A 81 055401
[28] Schneeweiss P, Kien F L and Rauschenbeutel A 2014 New J. Phys. 16 013014
[29] Yan H 2012 Appl. Phys. Lett. 101 194102
[30] Guarrera V, Szmuk R, Reichel J and Rosenbusch P 2015 New J. Phys. 17 083022
[31] Jaksch D, Briegel H J, Cirac J I, Gardiner C W and Zoller P 1999 Phys. Rev. Lett. 82 1975
[32] Mandel O, Greiner M, Widera A, Rom T, Hänsch T W and Bloch I 2003 Nature 425 937
[33] Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A and Zhan M S 2016 Phys. Rev. Lett. 117 123201
[34] Rsoft Design Group, Inc. Physical Layer Division 2000 Rsoft Photonics CAD Layout User Guide
[35] Briegel H J, Calarco T, Jaksch D, Cirac J I and Zoller P 2001 J. Mod Opt. 47 415
[1] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[2] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[3] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[4] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[5] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[6] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[7] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[8] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[9] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[10] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[11] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[12] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[13] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[14] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[15] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
No Suggested Reading articles found!