CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Topological phase in one-dimensional Rashba wire |
Sa-Ke Wang(汪萨克)1, Jun Wang(汪军)1, Jun-Feng Liu(刘军丰)2 |
1 Department of Physics, Southeast University, Nanjing 210096, China;
2 Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China |
|
|
Abstract We study the possible topological phase in a one-dimensional (1D) quantum wire with an oscillating Rashba spin-orbital coupling in real space. It is shown that there are a pair of particle-hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin-orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.
|
Received: 10 December 2015
Revised: 25 March 2016
Accepted manuscript online:
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 115074045 and 11204187) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284). |
Corresponding Authors:
Jun Wang
E-mail: jwang@seu.edu.cn
|
Cite this article:
Sa-Ke Wang(汪萨克), Jun Wang(汪军), Jun-Feng Liu(刘军丰) Topological phase in one-dimensional Rashba wire 2016 Chin. Phys. B 25 077305
|
[1] |
Moore J E 2010 Nature 464 194
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[4] |
Qi X L and Zhang S C 2010 Phys. Today 63 33
|
[5] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[6] |
König M, Wiedmann S, Brüne C, Qi X L and Zhang S C 2007 Science 318 766
|
[7] |
Kraus Y E and Zilberberg O 2012 Phys. Rev. Lett. 109 116404
|
[8] |
Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 106402
|
[9] |
Verbin M, Zilberberg O, Kraus Y E, Lahini Y and Silberberg Y 2013 Phys. Rev. Lett. 110 076403
|
[10] |
Guo H and Chen S 2015 Phys. Rev. B 91 041402
|
[11] |
Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401
|
[12] |
Xu Z, Li L and Chen S 2013 Phys. Rev. Lett. 110 215301
|
[13] |
Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
|
[14] |
Wang L, Soluyanov A A and Troyer M 2013 Phys. Rev. Lett. 110 166802
|
[15] |
Guo H, Shen S Q and Feng S 2012 Phys. Rev. B 86 085124
|
[16] |
Zhu S L, Wang Z D, Chan Y H and Duan L M 2013 Phys. Rev. Lett. 110 075303
|
[17] |
Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
|
[18] |
Klinovaja J, Stano P and Loss D 2012 Phys. Rev. Lett. 109 236801
|
[19] |
Rainis D, Saha A, Klinovaja J, Trifunovic L and Loss D 2014 Phys. Rev. Lett. 112 196803
|
[20] |
Gangadharaiah S, Trifunovic L and Loss D 2012 Phys. Rev. Lett. 108 136803
|
[21] |
DeGottardi W, Sen D and Vishveshwara S 2013 Phys. Rev. Lett. 110 146404
|
[22] |
Tezuka M and Kawakami N 2012 Phys. Rev. B 85 140508
|
[23] |
Matsuda F, Tezuka M and Kawakami N 2014 J. Phys. Soc. Jpn. 83 083707
|
[24] |
Satija I I and Naumis G G 2013 Phys. Rev. B 88 054204
|
[25] |
Harper P 1955 Proc. Phys. Soc. Sec. A 68 879
|
[26] |
Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 18
|
[27] |
Levine D and Steinhardt P J 1984 Phys. Rev. Lett. 53 2477
|
[28] |
Su W, Schrieffer J and Heeger A J 1979 Phys. Rev. Lett. 42 1698
|
[29] |
Su W and Schrieffer J 1981 Phys. Rev. Lett. 46 738
|
[30] |
Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319
|
[31] |
Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
|
[32] |
Nitta J, Meijer F E and Takayanagi H 1999 Appl. Phys. Lett. 75 695
|
[33] |
Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
|
[34] |
Datta S and Das B 1990 Appl. Phys. Lett. 56 665
|
[35] |
Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
|
[36] |
Resta R 1994 Rev. Mod. Phys. 66 899
|
[37] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[38] |
Thouless D 1983 Phys. Rev. B 27 6083
|
[39] |
Coh S and Vanderbilt D 2009 Phys. Rev. Lett. 102 107603
|
[40] |
Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
|
[41] |
Brouwer P 1998 Phys. Rev. B 58 R10135
|
[42] |
Grifoni M and Hänggi P 1998 Physics Reports 304 229
|
[43] |
Kohler S, Lehmann J and Hänggi P 2005 Physics Reports 406 379
|
[44] |
Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
|
[45] |
Arrachea L 2005 Phys. Rev. B 72 125349
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|