Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076601    DOI: 10.1088/1674-1056/25/7/076601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

Muhammad Imran1, Fayyaz Hussain1, Muhammad Rashid2, Muhammad Ismail3, Hafeez Ullah1,6, Yongqing Cai4, M Arshad Javid5, Ejaz Ahmad1, S A Ahmad6
1 Material Simulation Research Laboratory (MSRL), Department of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan;
2 Department of Physics, COMSATS Institute of Information Technology, 44000 Islamabad, Pakistan;
3 Department of Physics, Govt. College University Faisalabad, Layyah Campus, Layyah 31200, Pakistan;
4 Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore;
5 Department of Basic Sciences (Physics), UET, Taxila;
6 Department of Physics, Simulation Laboratory, the Islamia University of Bahawalpur, 63100, Pakistan
Abstract  Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.
Keywords:  molecular dynamics      surface diffusion      adatoms      atomic exchange  
Received:  20 August 2015      Revised:  23 February 2016      Accepted manuscript online: 
PACS:  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
Corresponding Authors:  Muhammad Imran     E-mail:  anam_iub@yahoo.com,fayyazhussain248@yahoo.com

Cite this article: 

Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Muhammad Ismail, Hafeez Ullah, Yongqing Cai, M Arshad Javid, Ejaz Ahmad, S A Ahmad Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters 2016 Chin. Phys. B 25 076601

[1] Tsong T T 1988 Reports on Progress in Physics 51 759
[2] Tsong T T 2003 Material Science and Engineering A 353 1
[3] Antczzak G and Ehrlich G 2005 Surface Science Reports 589 52
[4] Evans J W, Thiel P A and Barttelt M C 2006 Surface Science Reports 61 1
[5] Yang H, Sun Q, Zhang Z and Jia Y 2007 Phys. Rev. B 76 115417
[6] Wang C, Zhang Y and Jia Y 2011 Appl. Surf. Sci. 257 9329
[7] Kellogg G L 1994 Phys. Rev. Lett. 73 1833
[8] Wang S C, Kurpick U and Ehrlich G 1998 Phys. Rev. Lett. 81 4923
[9] Kyuno K and Ehrlich G 1999 Surface Science 437 29
[10] Fu T Y, Hwang Y J and Tsong T T 2003 Appl. Surf. Sci. 219 143
[11] Papathanakos V and Evangelakis G A 2002 Surface Science 499 229
[12] Liu Q W, Sun Z H, Ning X J, Li Y F, Liu L and Zhuang J 2004 Surface Science 554 25
[13] Wang C Q, Zhang Y S and Jia Y 2009 Solid State Science 11 1661
[14] Flores J C, Aguilar B H, Coronado A M and Huang H C 2007 Surface Science 601 931
[15] Yang J Y, Hu W Y and Xu M C 2008 Appl. Surf. Sci. 255 1736
[16] Wang C Q, Yang Y X, Zhang Y S and Jia Y 2010 Computational Materials Science 50 291
[17] Wang C, Qin Z, Zhang Y, Sun Q and Jia Y 2012 Appl. Surf. Sci. 258 4294
[18] Pun G P P and Mishin Y 2007 Defect Diffusion Fourm 266 49
[19] Pun G P P and Mishin Y 2009 Acta Materialia 57 5531
[20] Cai Y, Bai Z, Chintalapati S, Zeng Q and Feng Y P 2013 J. Chem. Phy. 138 154711
[21] Cai Y, Bai Z, Pan H, Feng Y P, Yakobson B I and Zhang Y W 2014 Nanoscale 6 1691
[22] Tang J and Yang J 2011 Physica B 406 2543
[23] Liu C L and Adams J B 1992 Surface Science 265 262
[24] Liu C L and Adams J B 1993 Surface Science 294 211
[25] Papanicolaou N I, Evangelakis G A and Kallinteris G C 1998 Computational Material Science 10 105
[26] Burne H, Bromann K, Roder H, Kern K, Jacobsen J and Norskov J 1995 Phys. Rev. B 52 R14380
[27] Liu C L, Cohen J M, Adams J B and VoterA F 1991 Surface Science 253 334
[28] Boisvert G and Lewis L J 1996 Phys. Rev. B 54 2880
[29] Boisvert G, Lewis L J, Puska M J and Nieminen R M 1995 Phys. Rev. B 52 9078
[30] Jones G W, Marcano J M, Norskov J K and Venables J A 1990 Phys. Rev. Lett. 65 3317
[31] Ratsch C, Seitsonen A P and Scheffler M 1997 Phys. Rev. B 55 6750
[32] Zhang J H, Zhang Y, Wen Y H and Zhu Z Z 2010 Computational Material Science 48 250
[33] Hayat S S, Rehman Z, Hussain G and Hassan N 2011 Chin. J. Phys. 49 1264
[34] Wang C, Zhang Y and Jia Y 2011 Appl. Surf. Sci. 257 9329
[35] Wang C, Wang F, Zhang Y, Sun Q and Jia Y 2012 Appl. Surf. Sci. 261 873
[36] Elkoraychy E, Sbiaai K, Mazroui M, Boughaleb Y and Ferrando R 2015 Surface Science 635 64
[37] Mińkowski M, Magdalena A and Kotur Z 2015 Surface Science 642 22
[38] Barnard P E, Terblans J J and Swart H H 2015 Appl. Surf. Sci. 356 213
[39] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[40] Sheng H W, Kramer M J, Cadien A, Fujita T and Chen M W 2011 Phys. Rev. B 83 134118
[41] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[42] Fujita T, Guan P F, Sheng H W, Inoue A, Sakurai T and Chen M W 2010 Phys. Rev. B 81 140204
[43] Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207
[44] Plimpton S J 1995 J. Comput. Phys. 117 1
[45] Visual Molecular dynamics (VMD) http://www.ks.uiuc.edu
[46] Karim A, Ahlam N, Rawi A, KaraA and Rahman T S 2006 Phys. Rev. B 73 165411
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!