Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076602    DOI: 10.1088/1674-1056/25/7/076602
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

Gui-Jun Cheng(程贵钧)1, Bao-Qin Fu(付宝勤)2, Qing Hou(侯氢)2, Xiao-Song Zhou(周晓松)1, Jun Wang(汪俊)2
1 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
2 Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region.
Keywords:  diffusion      grain boundary      helium and titanium      molecular dynamics  
Received:  29 January 2016      Revised:  15 March 2016      Accepted manuscript online: 
PACS:  66.30.J- (Diffusion of impurities ?)  
  61.72.Mm (Grain and twin boundaries)  
  66.30.-h (Diffusion in solids)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.
Corresponding Authors:  Bao-Qin Fu     E-mail:  bqfu@scu.edu.cn

Cite this article: 

Gui-Jun Cheng(程贵钧), Bao-Qin Fu(付宝勤), Qing Hou(侯氢), Xiao-Song Zhou(周晓松), Jun Wang(汪俊) Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation 2016 Chin. Phys. B 25 076602

[1] Zhou X S, Liu Q, Zhang L, Peng S M, Long X G, Ding W, Cheng G J, Wang W D, Liang J H and Fu Y Q 2014 In. J. Hydrogen Energ. 39 20062
[2] Zhou X S, Chen G J, Peng S M, Long X G, Liang J H and Fu Y Q 2014 In. J. Hydrogen Energ. 39 11006
[3] Song Y M, Luo S Z, Long X G, An Z, Liu N, Pang H C, Wu X C, Yang B F and Zheng S X 2008 Chin. Sci. Bull. 53 469
[4] Tanyeli I, Laurent M, Daniel M, Mauritius C M V D and Temmerman G D 2015 Sci. Rep. 5 9779
[5] Li C, Greuner H, Yuan Y, Luo G N, Boswirth B, Fu B Q, Xu H Y, Jia Y Z and Liu W 2014 J. Nucl. Mater. 455 201
[6] Wang J, Zhou Y L, Li M and Hou Q 2012 J. Nucl. Mater. 42 7290
[7] Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C and Luo S Z 2006 Chin. Phys. Lett. 23 1666
[8] Wang X S, Wu Z W and Hou Q 2015 J. Nucl. Mater. 465 455
[9] Heung L K 1994 Titanium for Long-Term Tritium Storage, WSRD Report: WSRC-TR-94-0596
[10] Nishitani S R, Kawabe H and Aoki M 2001 Mater. Sci. Eng. A-Struct. 312 77
[11] Fu B Q, Liu W and Li Z L 2009 Appl. Surf. Sci. 255 9348
[12] Zhou X S, Long X G, Zhang L, Peng S M and Luo S Z 2010 J. Nucl. Mater. 396 223
[13] Serra A and Bacon D J 1986 Philos. Mag. A 54 793
[14] Wang L, Yang Y, Eisenlohr P, Bieler T R, Crimp M A and Mason D E 2010 Metall. Mater. Trans. A 41 421
[15] Nie J F, Zhu Y M, Liu J Z and Fang X Y 2013 Science 340 957
[16] Yu Q, Shan Z W, Li J, Huang X X, Xiao L, Sun J and Ma E 2010 Nature 463 335
[17] Randle V, Rohrer G S and Hu Y 2008 Scr. Mater. 58 183
[18] Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
[19] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2013 Nucl. Instrum. Meth. B 303 4
[20] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2012 J. Nucl. Mater. 427 268
[21] Wang J, Hou Q, Sun T Y, Long X G, Wu X C and Luo S Z 2007 J. Appl. Phys. 102 93510
[22] Chen M and Hou Q 2010 Nucl. Sci. Tech. 21 271
[23] Chen M, Hou Q, Wang J, Sun T Y, Long X G and Luo S Z 2008 Solid State Commun. 148 178
[24] Pasianot R and Savino E J 1992 Phys. Rev. B 45 12704
[25] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[26] Zope R R and Mishin Y 2003 Phys. Rev. B 68 24102
[27] Ackland G J 1992 Philos. Mag. A 66 917
[28] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[29] Kittel C 2005 Introduction to Solid State Physics (New York: John Wiley and Sons)
[30] Pearson W B 1958 A Handbook of Lattice Spacings and Structures of Metals and Alloys (Oxford: Pergamon)
[31] Wang J, Hirth J P and Tome C N 2009 Acta Mater. 57 5521
[32] Young D A, Mcmahan A K and Ross M 1981 Phys. Rev. B 24 5119
[33] Trinkaus H 1983 Radiat. Eff. 78 189
[34] Cowgill D F 2005 Fusion Sci. Technol. 48 539
[35] Zhang B L, Wang J, Li M and Hou Q 2013 J. Nucl. Mater. 438 178
[36] Fu B Q, Xu B, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z and Liu W 2013 J. Nucl. Mater. 441 24
[37] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solid (New York: Pergamon)
[38] Hou Q, Li M, Zhou Y L, Cui J C, Cui Z G and Wang J 2013 Comput. Phys. Commun. 184 2091
[39] Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637
[40] Legrand B, Treglia G, Desjonqueres M C and Spanjaard D 1986 J. Phys. C-Solid State Phys. 19 4463
[41] Boisvert G and Lewis L J 1996 Phys. Rev. B 54 2880
[42] Vincent-Aublant E, Delaye J M and Van Brutzel L 2009 J. Nucl. Mater. 392 114
[43] Chandrasekhar S 1943 Rev. Mod. Phys. 5 1
[44] Yelon A and Movaghar B 1990 Phys. Rev. Lett. 65 618
[45] Wang Y L, Liu S, Rong L J and Wang Y M 2010 J. Nucl. Mater. 402 55
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[11] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[12] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[13] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[14] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[15] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
No Suggested Reading articles found!