Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068403    DOI: 10.1088/1674-1056/25/6/068403
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition

Da-Ming Chen(陈大明)1,2, Yuan-Xun Li(李元勋)2, Li-Kun Han(韩莉坤)2, Chao Long(龙超)2, Huai-Wu Zhang(张怀武)2
1 College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  

Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 mTorr (1 Torr=1.3332×102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (Mr/Ms) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs=104 T), and the anisotropy field is 16.5 kOe (1 Oe=79.5775 A·m-1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices.

Keywords:  Barium ferrite      thin films      magnetic properties  
Received:  23 March 2015      Revised:  22 February 2016      Accepted manuscript online: 
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  68.37.Rt (Magnetic force microscopy (MFM))  
  75.50.Vv (High coercivity materials)  
Fund: 

Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).

Corresponding Authors:  Da-Ming Chen     E-mail:  daming_chen@163.com

Cite this article: 

Da-Ming Chen(陈大明), Yuan-Xun Li(李元勋), Li-Kun Han(韩莉坤), Chao Long(龙超), Huai-Wu Zhang(张怀武) Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition 2016 Chin. Phys. B 25 068403

[1] Harris V G 2012 IEEE Trans. Magn. 48 1075
[2] Harris V G, Chen Z H and Chen Y J 2006 J. Appl. Phys. 99 08M911
[3] Adam J D, Davis L E and Dione G E 2002 IEEE Trans. Microwave Theory Tech. 50 721
[4] Yoon S D and Vittoria C 2004 J. Appl. Phys. 96 2131
[5] Ounnunkad S and Phanichphant S 2007 Physica Status Solidi 244 2190
[6] Li Y, Li Y, Li J, et al. 2013 J. Appl. Phys. 113 17B306
[7] Ishikawa A, Tanatashi K and Futamoto M 1996 J. Appl. Phys. 9 79
[8] Nie Y, Harward I, Balin K, Beaubien A and Celinski Z 2010 J. Appl. Phys. 107 073903
[9] Yoon S D and Vittoria C 2003 J. Appl. Phys. 93 15
[10] Chen Z, Yang A and Mahalingan K 2010 Appl. Phys. Lett. 96 242502
[11] Song Y and Sun Y 2010 Appl. Phys. Lett. 97 173502
[12] Saraf L V, Lofland S E, and Cresce A V 2001 Appl. Phys. Lett. 79 16
[13] Shams N N, Liu X and Matsumoto M 2005 J. Appl. Phys. 97 10K305
[14] Lotgering F K 1959 Inorg. Nucl. Chem. 9 113
[15] Shinde S R, Lofland G S and Ogale S B 1999 J. Appl. Phys. 85 7459
[16] Yoon S D and Vittoria C 2004 J. Appl. Phys. 96 2131
[17] Capraro S, Le Berre M, Chatelon J P, Bayard B, Joisten H, Canut C, Barbier D and Rousseau J J 2004 Mater. Sci. Eng. B 112 19
[1] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[2] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[5] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[6] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[7] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[8] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[9] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[10] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[11] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[14] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[15] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
No Suggested Reading articles found!