Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066401    DOI: 10.1088/1674-1056/25/6/066401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method

Qing-Yu Zhang(张庆宇)1, Dong-Ke Sun(孙东科)2,3, You-Fa Zhang(张友法)1, Ming-Fang Zhu(朱鸣芳)1
1 Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
2 Department of Mechanical Engineering Technology, Purdue University, 401 North Grant Street, West Lafayette, IN 47907, USA;
3 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  

In the present study, the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multi-component multi-phase lattice Boltzmann model. The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays. Droplets nucleated at the top (top-nucleation mode), or in the upside interpillar space of nanoarrays (side-nucleation mode), generate the non-wetting Cassie state, whereas the ones nucleated at the bottom corners between the nanoarrays (bottom-nucleation mode) present the wetting Wenzel state. Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes. The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated, indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface. The simulation results are compared well with the experimental observations reported in the literature.

Keywords:  condensate droplet      superhydrophobic nanoarray      wettability      lattice Boltzmann method  
Received:  29 December 2015      Revised:  28 January 2016      Accepted manuscript online: 
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  82.70.Uv (Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems, (hydrophilic and hydrophobic interactions))  
  05.50.+q (Lattice theory and statistics)  
  47.61.Fg (Flows in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51101035, 51371051, and 51306037).

Corresponding Authors:  Ming-Fang Zhu     E-mail:  zhumf@seu.edu.cn

Cite this article: 

Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳) Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method 2016 Chin. Phys. B 25 066401

[1] Lafuma A and Quere D 2003 Nat. Mater. 2 457
[2] Dorrer C and Ruehe J 2007 Langmuir 23 3820
[3] Narhe R D and Beysens D A 2006 Europhys. Lett. 75 98
[4] Park K C, Choi H J, Chang C H, Cohen R E, Mckinley G H and Barbastathis G 2012 ACS Nano 6 3789
[5] Guo P, Zheng Y, Wen M, Song C, Lin Y and Jiang L 2012 Adv. Mater. 24 2642
[6] Peng B, Ma X, Lan Z, Xu W and Wen R 2015 Int. J. Heat Mass Transfer 83 27
[7] Zhang Y F, Wu H, Yu X Q, Chen F and Wu J 2012 J. Bionic Eng. 9 84
[8] Rykaczewski K, Paxson A T, Anand S, Chen X M, Wang Z K and Varanasit K K 2013 Langmuir 29 881
[9] Rykaczewski K, Scott J H J and Fedorov A G 2011 Appl. Phys. Lett. 98 093106
[10] Royall C P, Thiel B L and Donald A M 2001 J. Microsc. 204 185
[11] Rykaczewski K 2012 Langmuir 28 7720
[12] Warsinger D E M, Swaminathan J, Maswadeh L A and Lienhard J H 2015 J. Membr. Sci. 492 578
[13] Hou Y, Yu M, Chen X, Wang Z and Yao S 2015 ACS Nano 9 71
[14] Farhangi M M, Graham P J, Choudhury N R and Dolatabadi A 2012 Langmuir 28 1290
[15] Liu Y W, Men Y M and Zhang X R 2012 J. Chem. Phys. 137 204701
[16] Guo Q M, Liu Y W, Jiang G F and Zhang X R 2014 Soft Matter 10 1182
[17] Wang Y and Chen S 2015 Appl. Surf. Sci. 327 159
[18] Zhang C B, Deng Z L and Chen Y P 2014 Int. J. Heat Mass Transfer 70 322
[19] Zhang W, Wang Y and Qian Y H 2015 Chin. Phys. B 24 064701
[20] Sun D K, Xiang N, Jiang D, Chen K, Yi H and Ni Z H 2013 Chin. Phys. B 22 114704
[21] Meng X H and Guo Z L 2015 Phys. Rev. E 92 043305
[22] Zhou X Y, Cheng B and Shi B C 2008 Chin. Phys. B 17 238
[23] Liang H, Chai Z H, Shi B C, Guo Z L and Zhang T 2014 Phys. Rev. E 90 063311
[24] Esfahanian V, Dehdashti E and Dehrouye-Semnani A M 2014 Chin. Phys. B 23 084702
[25] Xu A G, Zhang G C and Ying Y J 2015 Acta Phys. Sin. 64 184701 (in Chinese)
[26] Chen R, Shao J G, Zheng Y Q, Yu H D and Xu Y S 2013 Commun. Theor. Phys. 59 370
[27] Kusumaatmaja H and Yeomans J M 2007 Langmuir 23 6019
[28] Gross M, Varnik F, Raabe D and Steinbach I 2010 Phys. Rev. E 81 051606
[29] Zhang J F and Kwok D Y 2006 Langmuir 22 4998
[30] Zhang B, Wang J J and Zhang X R 2013 Langmuir 29 6652
[31] Fu X W, Yao Z H and Hao P F 2014 Langmuir 30 14048
[32] Zhang Q Y, Sun D K, Zhang Y F and Zhu M F 2014 Langmuir 30 12559
[33] Rykaczewski K, Landin T, Walker M L, Scott J H J and Varanasi K K 2012 ACS Nano 6 9326
[34] Lau K K, Bico J, Teo K B, Chhowalla M, Amaratunga G A, Milne W I, Mckinley G H and Gleason K K 2003 Nano Lett. 3 1701
[35] Chen C H, Cai Q, Tsai C, Chen C L, Xiong G, Yu Y and Ren Z 2007 Appl. Phys. Lett. 90 173108
[36] Varanasi K K, Hsu M, Bhate N, Yang W and Deng T 2009 Appl. Phys. Lett. 95 094101
[37] Shan X and Doolen G 1995 J. Stat. Phys. 81 379
[38] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[39] Huang H B, Thorne D T, Schaap M G and Sukop M C 2007 Phys. Rev. E 76 066701
[40] Li S L, Zhou Y P and Liu J J 2010 Physical Chemistry (Beijing: Higher education Press) p. 471 (in Chinese)
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[7] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[8] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[9] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[10] Wettability of Si and Al-12Si alloy on Pd-implanted 6H-SiC
Ting-Ting Wang(汪婷婷), Gui-Wu Liu(刘桂武), Zhi-Kun Huang(黄志坤), Xiang-Zhao Zhang(张相召), Zi-Wei Xu(徐紫巍), Guan-Jun Qiao(乔冠军). Chin. Phys. B, 2018, 27(4): 046101.
[11] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[12] Wetting and coalescence of the liquid metal on the metal substrate
Zhen-Yang Zhao(赵珍阳), Tao Li(李涛), Yun-Rui Duan(段云瑞), Zhi-Chao Wang(王志超), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 083104.
[13] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[14] Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties
Hai-Tao Zhou(周海涛), Ning Yu(喻宁), Fei Zou(邹飞), Zhao-Hui Yao(姚朝晖), Ge Gao(高歌), Cheng-Min Shen(申承民). Chin. Phys. B, 2016, 25(9): 096106.
[15] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
No Suggested Reading articles found!