Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057307    DOI: 10.1088/1674-1056/25/5/057307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electron transport in electrically biased inverse parabolic double-barrier structure

M Bati1,2,3, S Sakiroglu1, I Sokmen1
1. Physics Department, Faculty of Science, Dokuz Eylül University, 35390 İzmir, Turkey;
2. Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35390 İzmir, Turkey;
3. Physics Department, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Turkey
Abstract  A theoretical study of resonant tunneling is carried out for an inverse parabolic double-barrier structure subjected to an external electric field. Tunneling transmission coefficient and density of states are analyzed by using the non-equilibrium Green's function approach based on the finite difference method. It is found that the resonant peak of the transmission coefficient, being unity for a symmetrical case, reduces under the applied electric field and depends strongly on the variation of the structure parameters.
Keywords:  inverse parabolic double-barrier structure      resonant tunneling      non-equilibrium Green's function      electric field  
Received:  12 November 2015      Revised:  16 February 2016      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.Gk (Tunneling)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Corresponding Authors:  M Bati     E-mail:  m.bati@deu.edu.tr

Cite this article: 

M Bati, S Sakiroglu, I Sokmen Electron transport in electrically biased inverse parabolic double-barrier structure 2016 Chin. Phys. B 25 057307

[1] Tsu R and Esaki L 1973 Appl. Phys. Lett. 22 562
[2] Munteanu D, Autran J L, Moreau M and Houssa M 2009 J. NonCrystall. Sol. 355 1180
[3] Jiang H, Cai W and Tsu R 2011 J. Comput. Phys. 230 2031
[4] Wigner E 1932 Phys. Rev. 40 749
[5] Shifren L and Ferry D K 2001 Phys. Lett. A 285 217
[6] Levi A F J 2006 Applied Quantum Mechanics (1st edn.) (Cambridge: Cambridge University Press)
[7] Kadanof L P and Baym G 1962 Quantum Statistical Mechanics (New York: Ben-jamin)
[8] Keldysh L P 1965 Sov. Phys. JETP 20 1018
[9] Ferry D K, Goodnick S M and Bird J 2009 Transport in Nanostructures (2nd edn.) (Cambridge: Cambridge University Press)
[10] Xu Y, Wang J S, Duan W, Gu B L and Li B 2008 Phys. Rev. B 78 224303
[11] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. B 79 035415
[12] Lu Y and Guo J 2012 Appl. Phys. Lett. 101 043112
[13] Wang J S, Agarwalla B K, Li H and Thingnar J 2014 Front. Phys. 9 673
[14] Sergueev N, Sun Q F, Guo H, Wang B G and Wang J 2002 Phys. Rev. B 65 165303
[15] Yamamoto M, Ohtsuki T and Kramer B 2005 Phys. Rev. B 72 115321
[16] Chung N L, Jalil M B A and Tan S G 2010 J. Appl. Phys. 108 034503
[17] Mahfouzi F, Fabian J, Nagaosa N and Nikolic B K 2012 Phys. Rev. B 85 054406
[18] Chen S H, Chen C L, Chang C R and Mahfouzi F 2013 Phys. Rev. B 87 045402
[19] Zhang G P, Liu X, Wang C Z, Yao Y X, Zhang J and Ho K M 2013 J. Phys.: Condens. Matter 25 105302
[20] Do V N, Dollfus P and Nguyen V L 2006 J. Appl. Phys. 100 093705
[21] Frederiksen T, Paulsson M, Brandbyge M and Jauho A P 2007 Phys. Rev. B 75 205413
[22] Kurt S and Søren S 2013 Phys. Rev. B 88 075317
[23] Damle P, Gosh A W and Datta S 2002 Chem. Phys. 281 171
[24] Sato T, Shizu K, Kuga T, Tanaka K and Kaji H 2008 Chem. Phys. Lett. 458 152
[25] Schull G, Frederiksen T, Brandbyge M and Berndt R 2009 Phys. Rev. Lett. 103 206803
[26] Bergfield J P and Ratner M A 2013 Phys. Stat. Sol. B 250 2249
[27] Çakır D, Otálvaro D M and Brocks G 2014 Phys. Rev. B 90 245404
[28] Zheng X, Chen W, Stroscio M and Register L F 2006 Phys. Rev. B 73 245304
[29] Moreau M, Munteanu D and Autran J L 2009 Jpn. J. Appl. Phys. 48 111409
[30] Kubis T and Vogl P 2011 Phys. Rev. B 83 195304
[31] Mori N, Edagawa T, Kamakura Y and Eaves L 2014 Jpn. J. Appl. Phys. 53 04EN04
[32] Liu J, Xu X and Anantram M P 2014 J. Comput. Electron 13 620
[33] Caroli C, Combescot R, Nozieres P and Saint-James D 1971 J. Phys. C: Solid State Phys. 4 916
[34] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[35] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[36] Datta S 2000 Superlattices and Microstructures 28 253
[37] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press)
[38] Havu P, Havu V, Puska M J and Nieminen R M 2004 Phys. Rev. B 69 115325
[39] Polizzi E and Datta S 2003 Third IEEE Conference on Nanotechnology IEEE-NANO 2 40
[40] Wang J, Polizzi E and Lundstrom M 2004 J. Appl. Phys. 96 2192
[41] Harrison P 2010 Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 3rd edn. (Wiley)
[42] Chen W Q, Wang S M, Andersson T G and Thordson J T 1993 Phys. Rev. B 48 14264
[43] Gossard A C, Brown W, Allyn C L and Wiegmann W 1982 J. Vac. Sci. Technol. 20 694
[44] Gong J, Liang X X and Ban S L 2005 Chin. Phys. 14 201
[45] Ohmukai M 2005 Mater. Sci. Eng. B 116 87
[46] Wang H, Xu H and Zhang Y 2006 Phys. Lett. A 355 481
[47] Karmakar R, Biswas A, Mukherjee S and Deyasi A 2011 IJEAT 1 37
[48] Shen W P and Rustgi M L 1993 J. Appl. Phys. 74 4006
[49] Bell R P 1980 The Tunnel Effect in Chemistry (Springer)
[50] Prakash M 1978 J. Phys. G: Nucl. Phys. 4 1455
[51] Yamamoto H and Miyamoto K 1997 Phys. Stat. Sol. B 200 89
[52] Ohmukai M 2003 Mod. Phys. Lett. B 17 105
[53] Miyamoto K and Yamamoto H 1998 J. Appl. Phys. 84 311
[54] Allen S S and Richardson S L 1994 Phys. Rev. B 50 11693
[55] Schulz P A and Gonalves da Silva C E T 1988 Appl. Phys. Lett. 52 960
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[6] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[7] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[8] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[9] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[10] From microelectronics to spintronics and magnonics
Xiu-Feng Han(韩秀峰), Cai-Hua Wan(万蔡华), Hao Wu(吴昊), Chen-Yang Guo(郭晨阳), Ping Tang(唐萍), Zheng-Ren Yan(严政人), Yao-Wen Xing(邢耀文), Wen-Qing He(何文卿), and Guo-Qiang Yu(于国强). Chin. Phys. B, 2022, 31(11): 117504.
[11] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[12] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[13] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[14] Quantum nature of proton transferring across one-dimensional potential fields
Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(4): 046601.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!