|
|
Laser frequency locking based on Rydberg electromagnetically induced transparency |
Yuechun Jiao(焦月春), Jingkui Li(李敬奎), Limei Wang(王丽梅), Hao Zhang(张好), Linjie Zhang(张临杰), Jianming Zhao(赵建明), Suotang Jia(贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency (EIT) spectra in a room-temperature cesium vapor cell. Cesium levels 6S1/2, 6P3/2, and the nD5/2 state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ~0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9× 10-11. This kind of locking method can be used to stabilize the laser frequency to the excited transition.
|
Received: 02 December 2015
Revised: 16 January 2016
Accepted manuscript online:
|
PACS:
|
32.80.Ee
|
(Rydberg states)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grants Nos. 11274209, 61475090, 61378039, and 61378013), and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-009). |
Corresponding Authors:
Jianming Zhao
E-mail: zhaojm@sxu.edu.cn
|
Cite this article:
Yuechun Jiao(焦月春), Jingkui Li(李敬奎), Limei Wang(王丽梅), Hao Zhang(张好), Linjie Zhang(张临杰), Jianming Zhao(赵建明), Suotang Jia(贾锁堂) Laser frequency locking based on Rydberg electromagnetically induced transparency 2016 Chin. Phys. B 25 053201
|
[1] |
Gill P 2005 Metrologia 42 S125
|
[2] |
Vanier J 2005 Appl. Phys. B 81 421
|
[3] |
Chaneliere T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2005 Nature 438 833
|
[4] |
Millet-Sikking A, Hughes I G, Tierney P and Cornish S L 2007 J. Phys. B 40 187
|
[5] |
Becerra F E, Willis R T, Rolston S L and Orozco L A 2009 J. Opt. Soc. Am. B 26 1315
|
[6] |
Harris M L, Cornish S L, Tripathi A and Hughes I G 2008 J. Phys. B 41 085401
|
[7] |
Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A and Hughes I G 2002 J. Phys. B 35 5141
|
[8] |
Jundt G, Purves G T, Adams C S and Hughes I G 2003 Eur. Phys. J. D 27 273
|
[9] |
McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
|
[10] |
Noh H R, Park S E, Li L Z, Park J D and Cho C H 2011 Opt. Express 19 23444
|
[11] |
Wang X H, Chen X Z, Hou J D, Yang D H and Wang Y Q 2000 Acta Phys. Sin. 49 0085 (in Chinese)
|
[12] |
Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
|
[13] |
Hirata S, Akatsuka T, Ohtake Y and Morinaga A 2014 Appl. Phys. E 7 022705
|
[14] |
Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
|
[15] |
Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U and Adams C S 2009 Appl. Phys. Lett. 94 071107
|
[16] |
Bjorklund G C, Levenson M D, Lenth W and Ortiz C 1983 Appl. Phys. B 32 145
|
[17] |
Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
|
[18] |
Dudin Y O and Kuzmich A 2012 Science 336 887
|
[19] |
Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletić V 2012 Nature 488 57
|
[20] |
Tiarks D, Baur S, Schneider K, Durr S and Rempe G 2014 Phys. Rev. Lett. 113 053602
|
[21] |
Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E and Gould P L 2004 Phys. Rev. Lett. 93 063001
|
[22] |
Vogt T, Viteau M, Zhao J, Chotia A, Comparat D and Pillet P 2006 Phys. Rev. Lett. 97 083003
|
[23] |
Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
|
[24] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[25] |
Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
|
[26] |
Allan D W 1966 Proc. IEEE 52 211
|
[27] |
Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M and Adams C S 2010 New J. Phys. 12 065015
|
[28] |
Wang L, Liu X, Zhang H, Che J, Yang Y, Zhao J and Jia S 2012 J. Phys. Soc. Jpn. 81 104302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|