Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034207    DOI: 10.1088/1674-1056/abca25
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell

Jiabei Fan(樊佳蓓)1, Yunhui He(何云辉)1, Yuechun Jiao(焦月春)1,2, Liping Hao(郝丽萍)1, Jianming Zhao(赵建明)1,2,†, and Suotang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We present nonlinear spectra of four-level ladder cesium atoms employing 6S1/2 $\rightarrow$ 6P3/2$\rightarrow$ 7S1/2 $\rightarrow$ 30P3/2 scheme of a room temperature vapor cell. A coupling laser drives Rydberg transition, a dressing laser couples two intermediate levels, and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency (EIT). Nonlinear spectra are detected as a function of coupling laser frequency. The observed spectra exhibit an enhanced absorption (EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission (ET) signals at detunings to the transition. We define the enhanced absorption (transmission) strength, H EA (H ET), and distance between two ET peaks, γ ET, to describe the spectral feature of the four-level atoms. The enhanced absorption signal H EA is found to have a maximum value when we vary the dressing laser Rabi frequency $\varOmega_\rm d$, corresponding Rabi frequency is defined as a separatrix point, $\varOmega_\rm d_\rm Se$. The values of $\varOmega_\rm d_\rm Se$ and further $\eta=\varOmega_\rm d_\rm Se/\varOmega_\rm c$ are found to depend on the probe and coupling Rabi frequency but not the atomic density. Based on $\varOmega_\rm d_\rm Se$, the spectra can be separated into two regimes, weak and strong dressing ranges, $\varOmega_\rm d$ $\lesssim$ $\varOmega_\rm d_\rm Se$ and $\varOmega_\rm d$ $\gtrsim$ $\varOmega_\rm d_\rm Se$, respectively. The spectroscopies display different features at these two regimes. A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.
Keywords:  nonlinear spectroscopy      three-photon scheme      Rydberg state  
Received:  30 July 2020      Revised:  13 October 2020      Accepted manuscript online:  13 November 2020
PACS:  42.65.An (Optical susceptibility, hyperpolarizability)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the State Key Program of the National Natural Science of China (Grant Nos. 11434007 and 61835007), the National Natural Science Foundation of China (Grant Nos. 61675123, 61775124, and 11804202), and the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70).
Corresponding Authors:  Corresponding author. E-mail: zhaojm@sxu.edu.cn   

Cite this article: 

Jiabei Fan(樊佳蓓), Yunhui He(何云辉), Yuechun Jiao(焦月春), Liping Hao(郝丽萍), Jianming Zhao(赵建明), and Suotang Jia(贾锁堂) Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell 2021 Chin. Phys. B 30 034207

1 Bloembergen N 1982 Rev. Mod. Phys. 54 685
2 Shen Y R 1976 Rev. Mod. Phys. 48 1
3 Zhang Z D, Wang K, Yi Z H, Zubairy M S, Scully M O and Mukamel S 2019 J. Phys. Chem. Lett. 10 4448
4 Dorfman K E and Mukamel S 2018 Proc. Natl. Acad. Sci. USA 115 1451
5 Begley S, Vogt M, Gulati G K, Takahashi H and Keller M 2016 Phys. Rev. Lett. 116 223001
6 Casabone B, Friebe K, Brandst\"atter B, Sch\"uppert K, Blatt R and Northup T E 2015 Phys. Rev. Lett. 114 023602
7 Hoffman A J, Srinivasan S J, Gambetta J M and Houck A A 2011 Phys. Rev. B 84 184515
8 Bernstein I B, Greene J M and Kruskal M D 1957 Phys. Rev. 108 546
9 Olshansky R 1979 Rev. Mod. Phys. 51 341
10 Alexeeva N V, Barashenkov I V, Rayanov K and S Flach 2014 Phys. Rev. A 89 013848
11 Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press)
12 Brattke S, Varcoe B T H and Walther H 2001 Phys. Rev. Lett. 86 3534
13 Dudin Y O and Kuzmich A 2012 Science 336 887
14 Viscor D, Li W B and Lesanovsky I 2015 New J. Phys. 17 033007
15 Gorniaczyk H, Tresp C, Schmidt J, Fedder H and Hofferberth S 2014 Phys. Rev. Lett. 113 053601
16 Busche H, Huillery P, Ball S W, Ilieva T, Jones M P A and Adams C S 2017 Nat. Phys. 13 655
17 Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603
18 Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601
19 Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
20 Jaksch D, Cirac J I, Zoller P, Rolston S L, C\ot\'e R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
21 Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
22 Lukin M D, Fleischhauer M, C\ot\'e R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
23 Galindo A and Mart\'ín-Delgado M A 2002 Rev. Mod. Phys. 74 347
24 Mohapatra A K, Bason M G, Butscher B, Weatherill K J and Adams C S 2008 Nat. Phys. 4 890
25 Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M and Jia S T 2017 Phys. Rev. Appl. 8 014028
26 Abel R P, Carr C, Krohn U and Adams C S 2011 Phys. Rev. A 84 023408
27 Sedlacek J A, Schwettmann A, K\"ubler H, L\"ow R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
28 Holloway C, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
29 Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J and Biedermann G W 2014 Phys. Rev. A 89 033416
30 Wang J Y, Bai J D, He J and Wang J M 2017 Opt. Express 25 22510
31 Hao L P, Jiao Y C, Xue Y M, Han X X, Bai S Y, Zhao J M and Raithel G 2018 New J. Phys. 20 073024
32 Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
33 Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S and Weatherill K J 2012 Opt. Lett. 37 3858
34 Kondo J M, \vSibali\'c N, Guttridge A, Wade C G, De Melo N R, Adams C S and Weatherill K J 2015 Opt. Lett. 40 5570
35 Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E and Raithel G 2019 Phys. Rev. A 100 063427
36 Wade C G, \vSibali\'c N, de Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photon. 11 40
37 Vogt T, Viteau M, Zhao J M, Chotia A, Comparat D and Pillet P 2006 Phys. Rev. Lett. 97 083003
38 Cohen-Tannoudji C, Dupont-Roc J, Grynberg G and Meystre P 1992 Phys. Today 45 115
39 Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M and Jia S T 2018 Acta Phys. Sin. 67 093201 (in Chinese)
40 Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S and Weatherill K J 2020 Phys. Rev. X 10 011027
[1] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[2] Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule
Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Le-Le Song(宋乐乐), Hai-Bin Du(杜海滨), Xiao-Chun Wang(王晓春), Lan-Lai He(赫兰海), Si-Zuo Luo(罗嗣佐), Qin Yang(杨钦), Jing Leng(冷静), Fu-Chun Liu(刘福春). Chin. Phys. B, 2020, 29(9): 093201.
[3] Controlling Rydberg excitation process with shaped intense ultrashort laser pulses
Xiao-Yun Zhao(赵晓云), Chun-Cheng Wang(王春成), Shi-Lin Hu(胡师林), Wei-Dong Li(李卫东), Jing Chen(陈京), Xiao-Lei Hao(郝小雷). Chin. Phys. B, 2019, 28(8): 083202.
[4] Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse
Le-Le Song(宋乐乐), Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Qiu-Nan Tong(佟秋男), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(6): 063201.
[5] Photoelectron angular distributions of H ionization in low energy regime: Comparison between different potentials
Shu-Na Song(宋舒娜), Hao Liang(梁昊), Liang-You Peng(彭良友), Hong-Bing Jiang(蒋红兵). Chin. Phys. B, 2016, 25(9): 093201.
[6] Field ionization process of Eu 4f76snp Rydberg states
Zhang Jing (张婧), Shen Li (沈礼), Dai Chang-Jian (戴长建). Chin. Phys. B, 2015, 24(11): 113201.
[7] Lifetimes of Rydberg states of Eu atoms
Jing Hua (荆华), Ye Shi-Wei (野仕伟), Dai Chang-Jian (戴长建). Chin. Phys. B, 2015, 24(1): 013203.
[8] Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18
Dong Hui-Jie (董慧杰), Wang Ting (王婷), Li Chang-Yong (李昌勇), Zhao Jian-Ming (赵建明), Zhang Lin-Jie (张临杰). Chin. Phys. B, 2013, 22(7): 073201.
[9] Measurement of the argon-gas-induced broadening and line shifting of the barium Rydberg level 6s24d 1D2 by two-photon resonant nondegenerate four-wave mixing
Sun Jiang(孙江), Xiong Zhi-Qiang(熊志强), Sun Juan(孙娟), Wang Ying(王颖), and Su Hong-Xin(苏红新) . Chin. Phys. B, 2012, 21(6): 064215.
[10] Experimental study of bound and autoionizing Rydberg states of the europium atom
Xiao Ying(肖颖), Dai Chang-Jian(戴长建), and Qin Wen-Jie(秦文杰). Chin. Phys. B, 2010, 19(6): 063202.
[11] Experimental study of highly excited even-parity bound states of the Sm atom
Qin Wen-Jie(秦文杰), Dai Chang-Jian(戴长建), Xiao Ying(肖颖), and Zhao Hong-Ying(赵洪英). Chin. Phys. B, 2009, 18(8): 3384-3394.
[12] Energy level analyses of even-parity J = 1 and 2 Rydberg states of Sn I by multichannel quantum defect theory
You Shuai(由帅), Feng Yan-Yan(凤艳艳), and Dai Zhen-Wen(戴振文). Chin. Phys. B, 2009, 18(6): 2229-2237.
[13] Investigation of odd-parity Rydberg states of Eu I with autoionization detection
Xiao Ying(肖颖), Dai Chang-Jian(戴长建), and Qin Wen-Jie(秦文杰). Chin. Phys. B, 2009, 18(10): 4251-4258.
[14] Optical—optical double-resonant multiphoton ionization spectra of Rydberg states of nitrogen dioxide
Zhang Gui-Yin (张贵银), Zhang Lian-Shui (张连水), Sun Bo (孙博), Han Xiao-Feng (韩小峰), Yu Wei (于威). Chin. Phys. B, 2005, 14(3): 524-528.
[15] Radiative lifetimes of Rydberg 6pnd J=2 states of Pb I by multichannel quantum defect theory
Dai Zhen-Wen (戴振文), Jiang Hong-Mei (蒋红玫), Sun Gui-Juan (孙桂娟), Jiang Zhan-Kui (蒋占魁). Chin. Phys. B, 2004, 13(6): 845-849.
No Suggested Reading articles found!