ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell |
Jiabei Fan(樊佳蓓)1, Yunhui He(何云辉)1, Yuechun Jiao(焦月春)1,2, Liping Hao(郝丽萍)1, Jianming Zhao(赵建明)1,2,†, and Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We present nonlinear spectra of four-level ladder cesium atoms employing 6S1/2 $\rightarrow$ 6P3/2$\rightarrow$ 7S1/2 $\rightarrow$ 30P3/2 scheme of a room temperature vapor cell. A coupling laser drives Rydberg transition, a dressing laser couples two intermediate levels, and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency (EIT). Nonlinear spectra are detected as a function of coupling laser frequency. The observed spectra exhibit an enhanced absorption (EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission (ET) signals at detunings to the transition. We define the enhanced absorption (transmission) strength, H EA (H ET), and distance between two ET peaks, γ ET, to describe the spectral feature of the four-level atoms. The enhanced absorption signal H EA is found to have a maximum value when we vary the dressing laser Rabi frequency $\varOmega_\rm d$, corresponding Rabi frequency is defined as a separatrix point, $\varOmega_\rm d_\rm Se$. The values of $\varOmega_\rm d_\rm Se$ and further $\eta=\varOmega_\rm d_\rm Se/\varOmega_\rm c$ are found to depend on the probe and coupling Rabi frequency but not the atomic density. Based on $\varOmega_\rm d_\rm Se$, the spectra can be separated into two regimes, weak and strong dressing ranges, $\varOmega_\rm d$ $\lesssim$ $\varOmega_\rm d_\rm Se$ and $\varOmega_\rm d$ $\gtrsim$ $\varOmega_\rm d_\rm Se$, respectively. The spectroscopies display different features at these two regimes. A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.
|
Received: 30 July 2020
Revised: 13 October 2020
Accepted manuscript online: 13 November 2020
|
PACS:
|
42.65.An
|
(Optical susceptibility, hyperpolarizability)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the State Key Program of the National Natural Science of China (Grant Nos. 11434007 and 61835007), the National Natural Science Foundation of China (Grant Nos. 61675123, 61775124, and 11804202), and the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70). |
Corresponding Authors:
†Corresponding author. E-mail: zhaojm@sxu.edu.cn
|
Cite this article:
Jiabei Fan(樊佳蓓), Yunhui He(何云辉), Yuechun Jiao(焦月春), Liping Hao(郝丽萍), Jianming Zhao(赵建明), and Suotang Jia(贾锁堂) Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell 2021 Chin. Phys. B 30 034207
|
1 Bloembergen N 1982 Rev. Mod. Phys. 54 685 2 Shen Y R 1976 Rev. Mod. Phys. 48 1 3 Zhang Z D, Wang K, Yi Z H, Zubairy M S, Scully M O and Mukamel S 2019 J. Phys. Chem. Lett. 10 4448 4 Dorfman K E and Mukamel S 2018 Proc. Natl. Acad. Sci. USA 115 1451 5 Begley S, Vogt M, Gulati G K, Takahashi H and Keller M 2016 Phys. Rev. Lett. 116 223001 6 Casabone B, Friebe K, Brandst\"atter B, Sch\"uppert K, Blatt R and Northup T E 2015 Phys. Rev. Lett. 114 023602 7 Hoffman A J, Srinivasan S J, Gambetta J M and Houck A A 2011 Phys. Rev. B 84 184515 8 Bernstein I B, Greene J M and Kruskal M D 1957 Phys. Rev. 108 546 9 Olshansky R 1979 Rev. Mod. Phys. 51 341 10 Alexeeva N V, Barashenkov I V, Rayanov K and S Flach 2014 Phys. Rev. A 89 013848 11 Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) 12 Brattke S, Varcoe B T H and Walther H 2001 Phys. Rev. Lett. 86 3534 13 Dudin Y O and Kuzmich A 2012 Science 336 887 14 Viscor D, Li W B and Lesanovsky I 2015 New J. Phys. 17 033007 15 Gorniaczyk H, Tresp C, Schmidt J, Fedder H and Hofferberth S 2014 Phys. Rev. Lett. 113 053601 16 Busche H, Huillery P, Ball S W, Ilieva T, Jones M P A and Adams C S 2017 Nat. Phys. 13 655 17 Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603 18 Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601 19 Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 20 Jaksch D, Cirac J I, Zoller P, Rolston S L, C\ot\'e R and Lukin M D 2000 Phys. Rev. Lett. 85 2208 21 Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503 22 Lukin M D, Fleischhauer M, C\ot\'e R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901 23 Galindo A and Mart\'ín-Delgado M A 2002 Rev. Mod. Phys. 74 347 24 Mohapatra A K, Bason M G, Butscher B, Weatherill K J and Adams C S 2008 Nat. Phys. 4 890 25 Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M and Jia S T 2017 Phys. Rev. Appl. 8 014028 26 Abel R P, Carr C, Krohn U and Adams C S 2011 Phys. Rev. A 84 023408 27 Sedlacek J A, Schwettmann A, K\"ubler H, L\"ow R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819 28 Holloway C, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169 29 Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J and Biedermann G W 2014 Phys. Rev. A 89 033416 30 Wang J Y, Bai J D, He J and Wang J M 2017 Opt. Express 25 22510 31 Hao L P, Jiao Y C, Xue Y M, Han X X, Bai S Y, Zhao J M and Raithel G 2018 New J. Phys. 20 073024 32 Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003 33 Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S and Weatherill K J 2012 Opt. Lett. 37 3858 34 Kondo J M, \vSibali\'c N, Guttridge A, Wade C G, De Melo N R, Adams C S and Weatherill K J 2015 Opt. Lett. 40 5570 35 Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E and Raithel G 2019 Phys. Rev. A 100 063427 36 Wade C G, \vSibali\'c N, de Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photon. 11 40 37 Vogt T, Viteau M, Zhao J M, Chotia A, Comparat D and Pillet P 2006 Phys. Rev. Lett. 97 083003 38 Cohen-Tannoudji C, Dupont-Roc J, Grynberg G and Meystre P 1992 Phys. Today 45 115 39 Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M and Jia S T 2018 Acta Phys. Sin. 67 093201 (in Chinese) 40 Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S and Weatherill K J 2020 Phys. Rev. X 10 011027 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|