Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 053102    DOI: 10.1088/1674-1056/25/5/053102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation

Man-Hong Zhang(张满红)
School of Electricial and Electronics Engineering, North China Electric Power University, Beijing 102206, China
Abstract  By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson's algorithm, the one proposed by Eyert needs fewer total iteration numbers.
Keywords:  self-consistent field      electron density mixing      Broyden algorithm      density functional  
Received:  23 November 2015      Revised:  19 January 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.xr (Self-consistent-field methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176080).
Corresponding Authors:  Man-Hong Zhang     E-mail:  zhangmanhong@ncepu.edu.cn

Cite this article: 

Man-Hong Zhang(张满红) Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation 2016 Chin. Phys. B 25 053102

[1] Kohn W and Sham L 1965 Phys. Rev. A 140 1133
[2] Gonze X 1995 Phys. Rev. A 52 1096
[3] Kresse G and Furthmueler J 1996 Comput. Mater. Sci. 6 15
[4] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[5] Kerker G P 1981 Phys. Rev. B 23 3082
[6] Johnson D D 1988 Phys. Rev. B 38 12087
[7] Pulay P 1980 Chem. Phys. Lett. 73 393
[8] Broyden C G 1965 Math. Comput. 19 577
[9] Vanderbilt D and Louie S G 1984 Phys. Rev. B 30 6118
[10] Eyert V 1996 J. Comput. Phys. 124 271
[11] Johnson W R 2007 Atomic Structure Theory (Berlin: Springer-Verlag) pp. 44-45
[12] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores
Yanshuang Kang(康艳霜), Haijun Wang(王海军), and Zongli Sun(孙宗利). Chin. Phys. B, 2022, 31(5): 056104.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!