Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 053101    DOI: 10.1088/1674-1056/25/5/053101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation

Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田)
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  

A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pV QZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal· mol-1. The topographical features of the HS2(A2A') global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A') can be used as a building block for constructing the global potential energy surfaces of larger m S/H molecular systems and recommended for dynamic studies on the title molecular system.

Keywords:  potential energy surface      ab initio calculation      HS2      transition state  
Received:  22 December 2015      Revised:  25 January 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

Corresponding Authors:  Yu-Zhi Song, Qing-Tian Meng     E-mail:  yzsong@sdnu.edu.cn;qtmeng@sdnu.edu.cn

Cite this article: 

Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田) Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation 2016 Chin. Phys. B 25 053101

[1] Moran S and Ellison G B 1988 J. Phys. Chem. 92 1794
[2] Friedl R R, Brune W H and Anderson J G 1985 J. Phys. Chem. 89 5505
[3] Smardzewski R R and Lin M C 1977 J. Chem. Phys. 66 3197
[4] Balucani N, Beneventi L, Casavecchia P, Stranges D and Volpi G. G 1991 J. Chem. Phys. 94 8611
[5] Wang N S and Howard C J 1990 J. Phys. Chem. 94 8787
[6] Lovejoy E R, Wang N S and Howard C J 1987 J. Phys. Chem. 91 5749
[7] Qin Z, Cong R, Liu Z, Xie H and Tang Z 2014 J. Chem. Phys. 141 204312
[8] Glavas S and Toby S 1975 J. Phys. Chem. 79 779
[9] Sendt K, Jazbec M and Haynes B S 2002 Proc. Combust. Inst. 29 2439
[10] Gargurevich I A 2005 Ind. Eng. Chem. Res. 44 7706
[11] Whiteman M, Cheung N S, Zhu Y Z, Chu S H, Siau J L, Wong B S, Armstrong J S and Moore P K 2005 Biochem. Biophys. Res. 326 794
[12] Huxtable R 1986 Biochemistry of Sulphur (New York: Plenum Press)
[13] Sannigrahi A B, Peyerimhoff S D and Buenker R J 1977 Chem. Phys. Lett. 46 415
[14] Zhuo Q, Clouthier D J and Goddard J D 1994 J. Chem. Phys. 100 2924
[15] Owens Z T, Larkin J D and Schaefer III H F 2006 J. Chem. Phys. 125 164322
[16] Denis P A 2006 Chem. Phys. Lett. 422 434
[17] Peterson K A, Mitrushchenkov A and Francisco J S 2008 Chem. Phys. 346 34
[18] Song Y Z and Varandas A J C 2011 J. Phys. Chem. A 115 5274
[19] Holstein K, Fink E, Wildt J and Zabel F 1985 Chem. Phys. Lett. 113 1
[20] Yamamoto S and Saito S 1994 Can. J. Phys. 72 954
[21] Ashworth S H, Evenson K M and Brown J M 1995 J. Mol. Spectrosc. 172 282
[22] Isoniemi E, Khriachtchev L, Pettersson M and Räsänen M 1999 Chem. Phys. Lett. 311 47
[23] Ashworth S H and Fink E H 2007 Mol. Phys. 105 715
[24] Entfellner M and Boesl U 2009 Phys. Chem. Chem. Phys. 11 2657
[25] Varandas A J C 2004 Advanced Series in Physical Chemistry (Sigapor: World Scientific Publishing) p. 91
[26] Varandas A J C, Brand ao J and Quintales A M 1988 J. Phys. Chem. 92 3732
[27] Varandas A J C 2000 Lecture Notes in Chemistry (Laganá A and Riganelli A Eds.) (Berlin: Springer) Vol. 75 pp. 33-56
[28] Varandas A J C 1985 J. Mol. Struct. Theochem. 120 401
[29] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[30] Werner H J and Knowles P J 1988 Chem. Phys. Lett. 145 514
[31] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[32] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[33] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
[34] Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796
[35] Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, et al. 2012 Molpro version 2012.1, a package of ab initio programs
[36] Varandas A J C 1992 Chem. Phys. Lett. 194 333
[37] Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 404
[38] Song Y Z, Li Y Q, Gao S B and Meng Q T 2014 Eur. Phys. J. D 68 1
[39] Song Y Z, Zhang Y, Zhang L L, Gao S B and Meng Q T 2015 Chin. Phys. B 24 63101
[40] Varandas A J C 1988 Adv. Chem. Phys. 74 255
[41] Varandas A J C and Silva J D 1992 J. Chem. Soc. Faraday Trans. 88 941
[42] Varandas A J C 1987 Mol. Phys. 60 527
[43] Le Roy R J 1973 Spec. Period. Rep. Chem. Soc. Mol. Spectrosc. 1 113
[44] Varandas A J C 1996 J. Chem. Phys. 105 3524
[45] Li Y Q, Yuan J C, Chen M D, Ma F C and Sun M T 2013 J. Comput. Chem. 34 1686
[46] Li Y Q. Ma F C and Sun M T 2013 J. Chem. Phys. 139 154305
[47] Martínez-Núñez E and Varandas A J C 2001 J. Phys. Chem. A 105 5923
[48] Li Y Q, Zhang P Y and Han K L 2015 J. Chem. Phys. 142 124302
[49] Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C 2012 J. Chem. Phys. 136 194705
[50] Zhang L L, Gao S B, Meng Q T and Song Y Z 2015 Chin. Phys. B 24 13101
[51] Xing W, Shi D, Sun J, Liu H and Zhu Z 2013 Mol. Phys. 111 673
[52] Swope W C, Lee Y and Schaefer H F 1979 J. Chem. Phys. 70 947
[53] Peterson K A, Lyons J R and Francisco J S 2006 J. Chem. Phys. 125 084314
[54] Varandas A J C, Brown F B, Mead C A, Truhlar D G and Blais N C 1987 J. Chem. Phys. 86 6258
[55] Varandas A J C 1987 Chem. Phys. Lett. 138 455
[56] Varandas A J C and Tennyson J 1981 Chem. Phys. Lett. 77 151
[57] Murrell J N, Carter S, Farantos S C, Huxley P and Varandas A J C 1984 Molecular Potential Energy Functions (Chicheste: Wiley)
[58] Shi D H, Zhang J P, Sun J F, Liu Y F, Zhu Z L, Ma H and Yang X D 2008 Chin. Phys. B 17 3678
[59] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure Constants of Diatomic Molecules (New York: van Nostrand Reinhold)
[60] Continetti R E, Balko B A and Lee Y T 1991 Chem. Phys. Lett. 182 400
[1] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[2] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[3] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[4] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[5] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[6] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[7] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[8] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[9] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[10] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[11] Solvent effects and potential of mean force study of the SN2 reaction of CH3F+CN- in water
Chen Li(李琛), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2018, 27(3): 033401.
[12] Combined multi-level quantum mechanics theories and molecular mechanics study of water-induced transition state of OH-+CO2 reaction in aqueous solution
Chen Li(李琛), Meixing Niu(牛美兴), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2017, 26(10): 103401.
[13] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[14] Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds
Yexin Feng(冯页新), Ji Chen(陈基), Xin-Zheng Li(李新征), Enge Wang(王恩哥). Chin. Phys. B, 2016, 25(1): 013104.
[15] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong (米鸿), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅), Pan Xiao-Yin (潘孝胤). Chin. Phys. B, 2015, 24(9): 098201.
No Suggested Reading articles found!