CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology |
Pengcheng Huang(黄鹏程)1, Shuming Chen(陈书明)1,2, Jianjun Chen(陈建军)1 |
1. College of Computer, National University of Defense Technology, Changsha 410073, China; 2. National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D-TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carrier drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout.
|
Received: 07 July 2015
Revised: 07 October 2015
Accepted manuscript online:
|
PACS:
|
61.80.Jh
|
(Ion radiation effects)
|
|
85.30.Tv
|
(Field effect devices)
|
|
94.05.Dd
|
(Radiation processes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376109, 61434007, and 61176030) and the Advanced Research Project of National University of Defense Technology, China (Grant No. 0100066314001). |
Corresponding Authors:
Shuming Chen
E-mail: smchen_cs@163.com
|
Cite this article:
Pengcheng Huang(黄鹏程), Shuming Chen(陈书明), Jianjun Chen(陈建军) Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology 2016 Chin. Phys. B 25 036103
|
[1] |
Cannon E H, Reinhardt D D, Gordon M S and Makowenskyj P S 2004 IEEE 04CH37533 42nd Annual International Reliability Physics Symposium, Phoenix p. 300
|
[2] |
Gasiot G, Roche P and Flatresse P 2008 IEEE CFP08RPS-CDR 46$th Annual International Reliability Physics Symposium, Phoenix p. 192
|
[3] |
Heidel D F, Marshall P W, Pellish J A, Rodbell K P, Label K A, Schwank J R, Rauch S E, Hakey M C, Berg M D, Castaneda C M, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R and Xapsos M A 2009 IEEE Trans. Nucl. Sci. 56 3499
|
[4] |
Zhang K, Manzawa Y and Kobayashi K 2014 IEEE Intl. Reliability Phys. Symp. SE.2.1
|
[5] |
Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimham B, Gadlage M and Buhva B 2008 IEEE Trans. Nucl. Sci. 55 2854
|
[6] |
Cavrois V F, Pouget V, McMorrow D, Schwank J R, Fel N, Essely F, Flores R S, Paillet P, Gaillardin M, Kobayashi D, Melinger J S, Buhamel O, Dodd P E and Shaneyfelt M R 2008 IEEE Trans. Nucl. Sci. 55 2842
|
[7] |
Moen K A, Phillips S D, Wilcox E P, XCressler J D, Nayfeh H, Sutton A K, Warner J H, Buchner S P, McMorrow D, Vizkelethy G and Dodd P 2010 IEEE Trans. Nucl. Sci. 57 3366
|
[8] |
Gadlage M J, Ahlbin J R, Ramachandran V, Gouker P, Dinkins C A, Bhuva B L, Narasimham B, Schrimpf R D, McCurdy M W, Allies M L, Reed R A, Mendenhall M H, Massengill L W, Shuler R L and McMorrow D 2009 IEEE Trans. Nucl. Sci. 56 3115
|
[9] |
Dodd P E and Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583
|
[10] |
Schwank J R, Cavrois V F, Shaneyfelt M R, Paillet P and Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522
|
[11] |
Cavrois V F, Paillet P, Gaillardin M, Lambert D, Baggio J, Schwank J R, Vizkelethy G, Shaneyfelt M R, Kirose K, Blackmore E W, Faynot O, Jahan C and Tosti L 2006 IEEE Trans. Nucl. Sci. 53 3242
|
[12] |
Colladant T, Flament O, Hoir A L, Cavrois V F, D'Hose C and duPortdePontcharra J 2002 IEEE Trans. Nucl. Sci. 49 2957
|
[13] |
Hirose K, Saito H, Kuroda Y, Ishii S, Fukuoka Y and Takahashi D 2002 IEEE Trans. Nucl. Sci. 49 2965
|
[14] |
Hirose K, Saito H, Kuroda Y, Ishii S, Takahashi D and Yamamoto K 2004 IEEE Trans. Nucl. Sci. 51 3349
|
[15] |
Huang P, Chen S, Liang Z, Chen J, Hu C and He Y 2014 Chin. Sci. Bull. 59 2850
|
[16] |
Huang P, Chen S, Chen J, Liang B and Liu B 2014 IEEE Trans. Dev. Mat. Rel. 14 849
|
[17] |
Chen J J, Chen S M, Liang B and Deng K F 2012 Chin. Phys. B 21 016103
|
[18] |
Chen S M and Chen J J 2012 Chin. Phys. B 21 016104
|
[19] |
Chen J J, Chi Y Q and Liang B 2015 Chin. Phys. B 24 016102
|
[20] |
Huang P, Chen S, Chen J, Liang B and Chi Y 2015 IEEE Trans. Nucl. Sci. 62 3330
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|