Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 036103    DOI: 10.1088/1674-1056/25/3/036103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology

Pengcheng Huang(黄鹏程)1, Shuming Chen(陈书明)1,2, Jianjun Chen(陈建军)1
1. College of Computer, National University of Defense Technology, Changsha 410073, China;
2. National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D-TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carrier drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout.
Keywords:  floating body effect      in-line stacking      silicon-on-insulator      source injection  
Received:  07 July 2015      Revised:  07 October 2015      Accepted manuscript online: 
PACS:  61.80.Jh (Ion radiation effects)  
  85.30.Tv (Field effect devices)  
  94.05.Dd (Radiation processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376109, 61434007, and 61176030) and the Advanced Research Project of National University of Defense Technology, China (Grant No. 0100066314001).
Corresponding Authors:  Shuming Chen     E-mail:  smchen_cs@163.com

Cite this article: 

Pengcheng Huang(黄鹏程), Shuming Chen(陈书明), Jianjun Chen(陈建军) Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology 2016 Chin. Phys. B 25 036103

[1] Cannon E H, Reinhardt D D, Gordon M S and Makowenskyj P S 2004 IEEE 04CH37533 42nd Annual International Reliability Physics Symposium, Phoenix p. 300
[2] Gasiot G, Roche P and Flatresse P 2008 IEEE CFP08RPS-CDR 46$th Annual International Reliability Physics Symposium, Phoenix p. 192
[3] Heidel D F, Marshall P W, Pellish J A, Rodbell K P, Label K A, Schwank J R, Rauch S E, Hakey M C, Berg M D, Castaneda C M, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R and Xapsos M A 2009 IEEE Trans. Nucl. Sci. 56 3499
[4] Zhang K, Manzawa Y and Kobayashi K 2014 IEEE Intl. Reliability Phys. Symp. SE.2.1
[5] Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimham B, Gadlage M and Buhva B 2008 IEEE Trans. Nucl. Sci. 55 2854
[6] Cavrois V F, Pouget V, McMorrow D, Schwank J R, Fel N, Essely F, Flores R S, Paillet P, Gaillardin M, Kobayashi D, Melinger J S, Buhamel O, Dodd P E and Shaneyfelt M R 2008 IEEE Trans. Nucl. Sci. 55 2842
[7] Moen K A, Phillips S D, Wilcox E P, XCressler J D, Nayfeh H, Sutton A K, Warner J H, Buchner S P, McMorrow D, Vizkelethy G and Dodd P 2010 IEEE Trans. Nucl. Sci. 57 3366
[8] Gadlage M J, Ahlbin J R, Ramachandran V, Gouker P, Dinkins C A, Bhuva B L, Narasimham B, Schrimpf R D, McCurdy M W, Allies M L, Reed R A, Mendenhall M H, Massengill L W, Shuler R L and McMorrow D 2009 IEEE Trans. Nucl. Sci. 56 3115
[9] Dodd P E and Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583
[10] Schwank J R, Cavrois V F, Shaneyfelt M R, Paillet P and Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522
[11] Cavrois V F, Paillet P, Gaillardin M, Lambert D, Baggio J, Schwank J R, Vizkelethy G, Shaneyfelt M R, Kirose K, Blackmore E W, Faynot O, Jahan C and Tosti L 2006 IEEE Trans. Nucl. Sci. 53 3242
[12] Colladant T, Flament O, Hoir A L, Cavrois V F, D'Hose C and duPortdePontcharra J 2002 IEEE Trans. Nucl. Sci. 49 2957
[13] Hirose K, Saito H, Kuroda Y, Ishii S, Fukuoka Y and Takahashi D 2002 IEEE Trans. Nucl. Sci. 49 2965
[14] Hirose K, Saito H, Kuroda Y, Ishii S, Takahashi D and Yamamoto K 2004 IEEE Trans. Nucl. Sci. 51 3349
[15] Huang P, Chen S, Liang Z, Chen J, Hu C and He Y 2014 Chin. Sci. Bull. 59 2850
[16] Huang P, Chen S, Chen J, Liang B and Liu B 2014 IEEE Trans. Dev. Mat. Rel. 14 849
[17] Chen J J, Chen S M, Liang B and Deng K F 2012 Chin. Phys. B 21 016103
[18] Chen S M and Chen J J 2012 Chin. Phys. B 21 016104
[19] Chen J J, Chi Y Q and Liang B 2015 Chin. Phys. B 24 016102
[20] Huang P, Chen S, Chen J, Liang B and Chi Y 2015 IEEE Trans. Nucl. Sci. 62 3330
[1] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[2] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[3] Research on the radiation hardened SOI devices with single-step Si ion implantation
Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(4): 048503.
[4] Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation
Meng-Ying Zhang(张梦映), Zhi-Yuan Hu(胡志远), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Zheng-Xuan Zhang(张正选). Chin. Phys. B, 2018, 27(2): 028501.
[5] Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET
Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(12): 128501.
[6] Direct measurement and analysis of total ionizing dose effect on 130 nm PD SOI SRAM cell static noise margin
Qiwen Zheng(郑齐文), Jiangwei Cui(崔江维), Mengxin Liu(刘梦新), Dandan Su(苏丹丹), Hang Zhou(周航), Teng Ma(马腾), Xuefeng Yu(余学峰), Wu Lu(陆妩), Qi Guo(郭旗), Fazhan Zhao(赵发展). Chin. Phys. B, 2017, 26(9): 096103.
[7] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[8] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[9] Effect of cryogenic temperature characteristics on 0.18-μm silicon-on-insulator devices
Bingqing Xie(解冰清), Bo Li(李博), Jinshun Bi(毕津顺), Jianhui Bu(卜建辉), Chi Wu(吴驰), Binhong Li(李彬鸿), Zhengsheng Han(韩郑生), Jiajun Luo(罗家俊). Chin. Phys. B, 2016, 25(7): 078501.
[10] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[11] Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures
Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦). Chin. Phys. B, 2016, 25(11): 118503.
[12] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai (吕凯), Chen Jing (陈静), Luo Jie-Xin (罗杰馨), He Wei-Wei (何伟伟), Huang Jian-Qiang (黄建强), Chai Zhan (柴展), Wang Xi (王曦). Chin. Phys. B, 2015, 24(8): 088501.
[13] Strain analysis of free-standing strained silicon-on-insulator nanomembrane
Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强). Chin. Phys. B, 2015, 24(3): 036801.
[14] Microwave photonic filter with a continuously tunable central frequency using an SOI high-Q microdisk resonator
Liu Li (刘力), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(9): 093201.
[15] Partial-SOI high voltage laterally double-diffused MOS with a partially buried n+-layer
Hu Sheng-Dong (胡盛东), Wu Xing-He (武星河), Zhu Zhi (朱志), Jin Jing-Jing (金晶晶), Chen Yin-Hui (陈银晖). Chin. Phys. B, 2014, 23(6): 067101.
No Suggested Reading articles found!